Add value to your exquisite embroidery, with colour-versatile yarns from Recron®

Recron® Recosilk is a revolutionary new product developed by the Reliance Technology Centre especially for the embroidery segment. Recron® Recosilk features attributes akin to natural fibres like excellent softness and a gentle sheen. It can be easily dyed to create a vast palette of bright & brilliant colour shades, making it an ideal, cost-effective raw material for embroidery yarns.

Reliance Industries Limited, Reliance Corporate Park, Bldg. No. 8, B-Wing, 1st Floor, Thane-Belapur Road, Ghansoli, Navi Mumbai-400 701, India.
Call: Mumbai: (022) 44781264 / 44770000, Surat: (0261) 4000-309 / 319 / 324. Visit us at: www.recron.com
Far-reaching strengths
FOR DRAW FRAME TECHNOLOGY

The autoleveller Draw Frame TD 8 sets benchmarks:

- $CV_{1m} \text{ draw frame sliver} \leq 0.4\%$
- Yarn count variations $<1\%$
- Self optimisation for perfect break draft
- Separately driven SERVO CREEL
Promote your brands with smart way Connect with right audience

web partner

• Global presence
• Perfect target audience
• Long term relationship with industry body
• Creative ways to utilize medium
• Staying ahead of competition
• E-mail marketing to all TAI members
• Press releases
• Knowledge articles
• Banner ad
• Company listing on members directory page

Login to
www.textileassociationindia.org

The Textile Association (India)
Tel. : +91 22 2446 1145,
Fax : +91 22 2447 4971
M. : +91 9819801922
E-mail: taitcnt@gmail.com,
pavitra1941@gmail.com
Now available

Journal of the TEXTILE Association

on our Website as e-Journal

Login to
www.textileassociationindia.org/jta

The Textile Association (India)
Tel. : +91 22 2446 1145,
Fax : +91 22 2447 4971
M. : +91 9819801922
E-mail: tainct@gmail.com,
pavitra941@gmail.com
Complete Laboratory Solutions for Dyestuff and Textile Industries

Color Matching Systems
- SS 6200 Spectrophotometer
- SS 5100A Spectrophotometer
- SS 5145 Spectrophotometer
- Spectro Guide Gloss

Scan-o-Lite
- Visual Inspection cabinets & Luminaires

Color Matching Software

X S On-line Color Measurement

Textile Dye Dispensing Systems
- Tubeless Dispenser
 - MDS115u
- Solution Maker
 - MSM
- Tubeless Dispenser
 - MDS79u

Moisture Management Tester

Sweating Guarded Hotplate

SDL Atlas Lab Instruments
- Launder-Ometer
- Pnuburst - Bursting Strength Tester
- Digital Elmentofil Tear Tester
- Perpiration Tester
- Quickwash Fabric Testing System
- Flammability Testers
- Tensile Olsen Universal Tensile tester
- ICI Pilling and Snagging Tester
- Random Tumble Pilling Tester
- Martindale Abrasion Tester
- Crockmeter
- Fabric Yield Package System
- Moisture Management Tester
- Sweating Guarded Hot Plate
- Universal Wear Tester
- Air Permeability tester
- Washcoat Washer Extractor

Xenon Light Fastness Testers
- QSun B02
 - Rotating Drum
- QSun Xe3
 - Flat Bed

UV Tester
- QUV
 - UV Chamber

Premier Colorsan Instruments Pvt. Ltd.
EL-130, Electronic Zone, M.I.D.C., Mahape, Navi Mumbai - 400 710, India
Tel: +91-22-27637900, 27687900. Fax: +91-22-27622022 / 27622124 / 27637921
E-mail: pci@vsnl.com, colorlab@premiercolorsan.com, premiersipl@mtlnet.net.in

www.premiercolorsan.com
Testing equipment for fibres, yarns, and fabrics

STATIMAT DS
automatic tensile-, evenness-, and count tester for yarns.

STATIMAT 4U
automatic tensile tester for high-tensility yarns and monofilaments, with integrated yarn count measurement module AUTOCOUNT.

DYNAFIL ME
universal filament yarn tester, with automatic package changer models SE and SM.

TEXTURMAT ME+
automatic crimp contraction- and shrinkage tester for yarns.

FAVIMAT+ (AI) ROBOT2
automatic linear-density-, crimp-, and tensile tester for single fibres.

FAVIGRAPH
single-fibre linear-density- and tensile tester.

CSS
cotton classifying system.

STATIMAT MEL+
automatic tensile tester for elastane yarns, elastic combination yarns, and elastic fabrics.

STATIMAT ME+
automatic tensile tester for yarns.

DYNAJET PLUS
weak-spot tester for spun yarns.

COVAFIL+
capacitive evenness tester for filament yarns.

COMCOUNT
automatic yarn count measurement module.

ITEMAT+ TSI
automatic interlace and interlace stability tester.

FIBROTEST
fibre length- and strength tester.

MDTA3

QUICK SPIN UNIT
(QSU) Denkendorf single Rotor Quick spinning system.

NEW:

DRAPE TEST
automatic drapability tester for technical- and non-crimp fabrics.

www.textechno.com
Bekaert Carding Solutions at your service...
A wide range of carding wires with excellent performance

The reliable partner...

Looking for the best carding solution for your short staple application? Bekaert might be just the reliable partner you are looking for.

Through partnerships with textile machine builders and customers worldwide, Bekaert strives to be the independent and recognized leader in the card clothing business.

By enabling our customers to benefit from our know-how, technological strengths and operational excellence, we believe that we can deliver you carding solutions that are truly unique.

The Bekaert Group is a European based company, headquartered in Belgium and generates annual combined sales of €4.5 billion. The 27,000 employees around the world work together as one company, serving customers in 120 countries.

www.bekaert.com
The Textile Association (India) - Delhi presents

National Textile Seminar - 2013

Theme

Propelling Growth Through Innovation

12th April, 2013

PHD House, August Kranti Marg, New Delhi

Delegate Registration

Register as a delegate by paying a nominal registration fee of Rs. 500/- only
For Delegate Registration, please contact:
Mr. Puneet Chawla,
Chairman, Delegate Registration Committee
Mobile: 9958055114
E-mail: puneeet.palmexports@gmail.com

Mr. T. N. Sinha,
Co-Chairman, Delegate Registration Committee
Mobile: 9988883070
E-mail: tnsinha@yahoo.co.uk

Confirm your participation NOW, as limited Delegates will be registered for this prestigious Seminar

Souvenir

Avail opportunity to market your products by releasing the advertisement in the Souvenir

<table>
<thead>
<tr>
<th>Advertisement Options</th>
<th>Tariff (INR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Page (Front Inside)</td>
<td>30000</td>
</tr>
<tr>
<td>Cover Page (Back Inside)</td>
<td>30000</td>
</tr>
<tr>
<td>Cover Page (Back Outside)</td>
<td>40000</td>
</tr>
<tr>
<td>1st Opening Page</td>
<td>20000</td>
</tr>
<tr>
<td>Book-Mark (Both Sides)</td>
<td>15000</td>
</tr>
<tr>
<td>Full Page</td>
<td>15000</td>
</tr>
<tr>
<td>Double Spread</td>
<td>10000</td>
</tr>
<tr>
<td>Half Page</td>
<td>10000</td>
</tr>
</tbody>
</table>

For Advertisement Booking, please contact:
Mr. Ritesh Gupta,
Chairman, Souvenir Committee
Mobile: 9810311428, E-mail: riteshguptanewdelhi@yahoo.co.in

Mr. Ashish Gupta,
Co-Chairman, Souvenir Committee
Mobile: 9971789111, E-mail: ashish.gupta@ocm.in

for more information, please contact
Seminar Chairman : Mr. Sudhish Aggarwala (+91-9868967421)
Seminar Secretary : Mr. D.K.Singh (+91-9711987523)
Secretary, TAI (I) - Delhi : Mr. H.N. Jain (+91-9871899690)

The Textile Association (India) - Delhi
401, Gagan Deep, 12, Rajendra Place, New Delhi-110008 (INDIA)
Tel: +91-11-2575 0224, 2573 6456 E-mail: taidel@bol.net.in Website: http://www.tai-delhi.org
TRUST
THE ONE PRODUCT
WE HAVE BEEN
WORKING HARD ON,
FOR THIRTY FIVE YEARS!

Veejay Lakshmi Engineering Works Limited was established in 1974, Coimbatore, India. Veejay Lakshmi is the largest manufacturer of Two-For-One Twisters (TFO) in India with more than 5000 installations worldwide. Veejay Lakshmi is the only manufacturer of Automatic Core Winders (ACW) in India.

Veejay Lakshmi also manufactures Precision Propeller Assembly Winders (PW), Random Assembly Winders (AW) and Rewinders (RW). Continuing the tradition of commitment in delivering quality products, coupled with services and spares to meet customer requirements, Veejay Lakshmi is poised to excel in combination with continuous Research and Development for design improvements and cutting-edge technology innovation.

Veejay Lakshmi Engineering Works Ltd.,
Singarenisayam, N.G.G.O. Colony (Post), Coimbatore 641 022, India.
Ph: 91-422 2460662, 2460355, 2461369. Ext. 403 / 404.
Fax: 91-422 2460453, 2461565
E-mail: sales@veejaylakshmi.com, spares@veejaylakshmi.com
www.veejaylakshmi.com

Selling Agent: Veejay Sales and Services Limited, Coimbatore.
Branch Offices: Mumbai, New Delhi, Chandigarh, Ahmedabad and Kolhapur.
WEAVE THE FUTURE OF FASHION AT InFashion 2013

InFashion 2013, South Asia's largest textile and ingredient innovation show. A show that brings together the entire value chain of textile, apparel and fashion community, this is the only platform that gives you a chance to get a closer look at what is best suited for your brand. Stitched together under one roof, it's an ideal place with a wide range of fabrics, palates, textiles and accessories that lets you be the forerunner of changing trends. So, be there and see what opportunities the fashion and textile world holds for you.

Pre-register today. Log on to www.indiainfashion.com
Up to 40% more productivity
LARGEST "ACTIVE CARDING AREA" AND MAXIMUM PRECISION

Only the Trützschler High Production Card TC 11 offers a clothing surface of 5.3 m². Together with the 1.28 m working width, this represents the perfect balance between productivity and efficiency.
Visit: www.textileassociationindia.org
Grab slot for your company advertisement
We believe in the power of possibilities and innovation for creating unique yet simple solutions for textile processes

Novatex RCA

Anti-tinting agent
Prevents stray unfixed colours from tinting ground fabric.
Clears fabric tinted with unfixed dyes during soaping
Soaping agent for reactive, vat and direct dyes

ASPIRE CHEMICALS PVT LTD.,
E-mail : glxindia@vsnl.com
www.glxindia.com
Phones : +91-22-26730272
Telefax : +91-22-2673940

Eco sustainable products conforming to OekoTEX, GOTS & REACH requirements
The 12th Asian Textile Conference
Shanghai • China
2013.10.24—26
“New Prospects on Textiles”

Sponsor:
China Textile Engineering Society

visit us for Registration & Call for Papers
www.atc12.org
THE CARDING REVOLUTION HAS BEGUN!

Experience ICC’s brand new cutting-edge solutions and get an edge over others...

MAXUS

- Made from special grade micro-alloy steel to deliver upto 1000T
- Higher life expectancy, lower cost per kg of yarn production
- Special tooth geometry suitable for very high production rates
- Consistency in quality and longer life time
- Advanced heat treatment process for even and consistent hardness
- Fine grained crystalline microstructure

PROGRESSIVE triumph tops

- Special aerodynamic tooth design for smooth performance
- Unique tooth geometry for efficient fibre transfer at high speed
- Reinforced wire tip to withstand very high production rates
- Optimised maintenance cycle
- Higher life expectancy of wire
- Cut-to-point tooth geometry

nextratops

- Suitable for very high production rates
- Special grade steel chemistry of wires to ensure high life expectancy
- Gentle opening action ensures better impurities removal without additional strain on fibre
- Progressive increase of wire population from fibre entry to exit zone
- No adjacent zone with widely different wire point density

The Indian Card Clothing Co. Ltd.
Mumbai-Pune Road, Pimpri, Pune - 411018, India, Tel: +91 20 39858200 (Operator)
Direct: +91 20 39858234 (Domestic), +91 20 39858235 (Export), Fax: +91 20 39858300
E-mail: sales@cardindia.com (Domestic), export@cardindia.com, Website: www.cardindia.com
BACK TO GLORY
International Conference
on
"Challenges Facing Indian Cotton"
Jointly Organized By

The Textile Association (India)
Ahmedabad Unit

Textile Machinery Manufacturers' Association (India)

Diagonal Consulting (India)

09th - 10th April 2013

Venue:
- Indian Institute of Management (IIM)
 Vastrapur, Ahmedabad, Gujarat, India

In Association with
- All Gujarat Cotton Ginners Association
- Saurashtra Cotton Ginners Association
- Gujarat Spinners Association
SSP PVT LIMITED has come up with a Zero Liquid Discharge Effluent Treatment Solution for Textile Dyeing Industries, by which in the one hand the textile dyeing industry at large can treat the effluent consisting of dissolved solids, dye chemicals & reuse the same condensate water repeatedly for the dyeing process instead of pumping the water from the ground and on the other hand the salt used for dyeing can be reused & sold in the market after dyeing.

The basic thrust of the technology is to convert entire quantity of effluent to zero liquid level by separating water & salt using evaporation & separation technology.

- Zero Liquid Discharge System
- Highest Steam Economy
- Low Operating Cost
- Less Downtime for Maintenance
- Generation of Reusable Condensate Water
- Operator Friendly
TEXTILES DIRECTORY
3rd Edition

Over 3600 entries
Segment wise company profiles in alphabetical order

40% More Entries than previous Directory

Cost of Printed Copy : Rs 1,000 / USD 50
Cost of Directory on CD : Rs 1,000 / USD 50
Bundled cost – Printed Copy and CD : Rs 1,500 / USD 75

Secure your copy now

Contact: Mr. S. Roswant - Joint Secretary
CONFEDERATION OF INDIAN TEXTILE INDUSTRY
6th Floor, Narain Mandir, 23, Barakhamba Road, New Delhi-110001, India
Ph: +91 11 41519058(Ext); 23325012/5013/5015/5055, Fax: +91 11 41519602
Email: mail@ciitindia.com; Website: www.ciiindia.com

Indian Textile Industry Handbook of Statistics 2012 also releasing soon
Spinning of Manmade Fibres and Blends on Cotton System * ₹ 150; $ 10
This extensively revised version lucidly explains the phenomena underlying the spinning processes of the cotton system. Crucial points that may escape attention owing to the pressure of managing production are identified for control and improvement of quality and productivity. A must buy for technologists and managers of manmade fibre spinning mills, and also for students.

A General Equation for Estimating Yarn Tenacity * ₹ 100; $ 8
This research monograph is an excellent example of how good quantitative theory helps mills to reduce costs while achieving the desired tenacity in cotton yarns. Cotton spinning mills with sophisticated fibre testing instruments can save cotton costs up to 4% using this prediction equation.

Comprehensive Handbook of Spinning Maintenance * ₹ 400; $ 30
Every spinning mill on cotton and manmade fibres can assess its level of excellence in maintenance management and most will be able to improve it using Part 1. Parts 2 and 3 not only make available widely scattered use-worthy information, but also give several directives for ensuring that the work practices are right.

Fundamentals of Design for Textile and Other End Uses * ₹ 495; $ 35
Multi-coloured and hard bound. This book is useful for all interested in printing on cloth, paper and the like: students of technology, home science, and even housewives interested in embroidery.

High Speed Spinning of Polyester & its Blends with Viscose * ₹ 450; $ 30
Hard bound. Practical guide to spinning mills for increasing profitability by increasing productivity at ring frames, not just for polyester blends, but also for all staple fibres. A must for every progressive spinning technician and for top managements of spinning mills.

Book your orders to: The Textile Association (India), Central Office
PRECITEX is the undisputed leader in the domestic Indian market. That is not all. It is also the most preferred Indian brand of aprons and cots around the world, exported to more than 40 countries across the continents.

That is why we keep winning top export awards year after year. It is a testimony to the world class quality of PRECITEX products that go a long way in enhancing the productivity, profitability, and competitiveness of our highly demanding quality conscious customers.
Contents

Editorial : Warm Welcome for the Budget 2013 by Prof. (Dr.) R. V. Adivarekar 275

Green Dyeing with Sesbania Acueata plant by Charu Swami, Sangita Saini & V. B. Gupta 279

Greener Method of Dyeing of Silk with Natural Colouring Matters by Asim Kumar Roy Choudhury, Batan Adok & Upasana Chatterjee 286

Comfort Studies on Jute/Cotton Blended Fabrics by R. Prathiba Davi, R. Rathinamoorthy & J. Jeyakodi Moses 301

3-Dimensional Solid Woven Architectres and Manufacturing by Sanjay K. Parmar & Shweta J. Doctor 307

Texpersience From Reactive Dyes to Reactive Auxiliaries by Dr. N. Sekar 314

Texnotes Ecological Concerns in Denim Washdown Processes by Chet Ram Meena & Shyam Phadke 316

OTHER FEATURES Unit Activities 317
News 322
Advertisement Index 337
Product Technology 338
Forthcoming Events 345
Your Advertisements in Journal of the Textile Association hits your targeted clients because

- JTA is the premier publication in this field for more than seven decades
- JTA brings the latest news & views on trade, technology & development
- JTA circulates in over 18 countries
- JTA is online

For more details, Please contact

Office : The Textile Association (India)
Pathare House, Next to State Bank of India,
67, Ranade Road, Dadar (W),
Mumbai – 400 028 (India)
Tel.: +91 22 24461145
Fax: +91 22 24474971
Mail: taicnt@gmail.com

www.textileassociationindia.org
Warm welcome for the Budget 2013

To begin with, let me wish all our readers, “A very Happy and Prosperous New Year- 2013”. The year has certainly begun on a very encouraging note for all of us.

I would be happy to share some of the collaborations which we have initiated at ICT. Firstly, ICT is in process of collaborating with Unilever Industries Pvt. Ltd. for combined research work. Moreover, it has now signed an MoU with The Ethiopian Textile Industry Development Institute (TIDI), with the sole purpose of developing their Textile industry which is right now at its infant stage. Why I had to make mention of it? Just to highlight that this is the sign of shifting of textile related activities now from Asian continent to African continent.

On the other hand, the Indian textile industry, employing over 100 million people directly and indirectly has been looking for various schemes and assistance in the Union Budget 2013-14 to regain its global competitiveness which faced the worst ever crisis in its history during 2010-11 owing to an unprecedented volatility in the cotton prices and external factors. There have been signs of recovery in the past few months and further improvement is expected with the support of the positive features of the Budget. Main highlights of the budget of 2013-14 for the textile industry are restoring the optional excise regime for branded garments and made-ups which has been a long standing demand of the industry, continuation of Technology Upgradation Fund Scheme (TUFS) during the 12th Five Year Plan and allocation of Rs.2400 crores for 2013-14, reduction of customs duty from 7.5% to 5% for textile machinery which would also help to augment investments in the sector. A further allocation of Rs.50 crores for Apparel Parks and launching an Integrated Processing Development Scheme (IPDS) for 21 parks would also be an important growth factor where 42 parks are already developed. Also, reduction in the interest burden for working capital and term loans to a concessional rate of 6 per cent for the handloom sector will work as a major boon for the handloom sector. You can read analysis of Budget by our National President Mr. D. R. Mehta in this issue.

Apart from all these positive factors, reduction of the duty rates for man-made fibres and assistance to the industry to handle the precarious power situation are two major areas where the Budget has not addressed the issues of the textiles industry. However, we would like to thank the Finance Minister and extend a warm welcome to this budget which is a ray of hope for the growth of our industry.

Thus, we should say that, it is good to “Make hay while the sun shines” or act wisely while the opportunity is favourable.
I would like to subscribe / renew my subscription to Journal of the TEXTILES Association Bi-Monthly Magazine

Journal of the TEXTILES Association (Subscription Information)

<table>
<thead>
<tr>
<th>Frequency (Bi-monthly) Magazine</th>
<th>Cover Price</th>
<th>Your Discount</th>
<th>You Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ISSUES (1 year)</td>
<td>₹ 500.00</td>
<td>---</td>
<td>₹ 500.00</td>
</tr>
<tr>
<td>12 ISSUES (2 year)</td>
<td>₹ 1000.00</td>
<td>₹ 100.00</td>
<td>₹ 900.00</td>
</tr>
<tr>
<td>18 ISSUES (3 year)</td>
<td>₹ 1500.00</td>
<td>₹ 200.00</td>
<td>₹ 1300.00</td>
</tr>
</tbody>
</table>

Personal Details

Name: __

Designation: __________________ Company: ___________________________

Address: ___

City Pin: __________________ State: ________________________________

Country: ___

Phone: __________________ Fax: __________________ Mobile: ____________

E-Mail: __________________ Website: ________________________________

Activity Description: ___

Payment Details

Please find enclosed herewith Cheque / DD No. ____________ Dated: ____________

Form ₹ ______ Rupees In words) ______________________________

Drawn on Bank __________________________ Branch ___________________________

In favour of THE TEXTILE ASSOCIATION (INDIA) Payable at par in India

(Inc case cheque is drawn outside Maharashtra, Add ₹ 50/-)

Date: __________________ Subscriber’s Signature ______________________

(Please attach Business Card)

Complete the details & Mail subscription from to:

THE TEXTILE ASSOCIATION (INDIA)

Pathare House, 2nd Floor, Next to State Bank of India, 67, Ranade Road, Dadar (W), Mumbai - 400 028.

Phone: (91-22) 2446 1145 • Fax (91-22) 2447 4971

E-mail: taicnt@gmail.com • www.textileassociationindia.org
Green Dyeing with Sesbania Aculeata Plant

Charu Swami*, Sangita Saini,
Department of Home Science and Arts, Dayalbagh Educational Institute
&
V.B. Gupta
Department of Textile Technology, Indian Institute of Technology

Abstract
In India, there is a large base of plant resource and little has been exploited so far. The revival of natural dyes has prompted researchers to explore newer natural dye resources that are cheaply and abundantly available. In continuation of this research stream, a plant 'Sesbania aculeata', commonly known as Dhaincha, was chosen for the present research. This plant belongs to the family of Fabaceae. Its usage in making natural dye does not result in any wastage of otherwise highly commercial product. In the present study, dyeing with ethanolic extract of Sesbania aculeata has been shown to give good dyeing results. The dyeing on silk and polyester blend fabrics were subjected for analysis in terms of K/S and CIE L*a*b* values as well as their performance properties.

Keywords
Ethanolic extraction, Natural dyeing, Polyester-cotton blend, Sesbania aculeata, Silk

1. Introduction
Today, natural colourants are emerging globally because of the growing consumer awareness about environmental conservation. Indian flora and fauna are rich in many untapped sources that have not been explored so far. In this regard, plant sources which have potential use in textile dyeing industries could be explored further for commercialization. Efforts are now being made to identify the raw materials from plant sources and to standardize the recipes for their use. In continuation of this research stream, a plant 'Sesbania aculeata', commonly known as Dhaincha, was chosen for the present research.

Sesbania is a genus of flowering plants in the pea family, Fabaceae. Fabaceae or Leguminosae is an important and third largest family of flowering plants, which is commonly known as the legume family, pea family, bean family or pulse family. The plant Sesbania aculeata along with its various species like Sesbania Sesban, Sesbania Grandiflora has several uses as green manure (adding 150 kg nitrogen/hectare) and is used for erosion control, hedges, intercropping "mother plants," nitrogen fixation, and windbreaks, for fodder and fuel wood [1]. It is used for manufacturing paper, particle boards, pipes, ropes and as sizing and thickening agent. Lately, the Sesbania aculeata plant is used as biomass and supplies 128 kW of electricity at 240 V. in Bihar. It also has several medicinal uses and is used in treatment of various eye, skin and inflammations [2].

Sesbania aculeata is an erect, low annual shrub and reaches up to height of one to two meters. It has fibrous, pithy stems with long leaves. It bears purple-spotted yellow flowers from September to November in Indian climatic conditions. It produces pods which contain light brown beans. Stems are fairly thick, glabrous, branched from the base but are soft and pithy. The leaves are pinnate, 1.2-2.5 cm long, 0.3 cm wide and are glabrous [3] (refer Figure No. 1). The plant is cultivated in India, Pakistan, China, Sri Lanka and Africa.

* All the Correspondence should be addressed to,
Charu Swami,
Department of Home Science, Faculty of Arts,
Dayalbagh Educational Institute, (DEI),
Agra.
E-mail: cswami.dei@gmail.com

Figure 1: Sesbania aculeata Plant
2. Materials and Methods

2.1 Materials

Sesbania aculeata plant was collected from the fields near Agra city (India). The leaves and the stems were washed well with tap water and dried under ambient conditions. The dried material was mashed and grounded well to from a fine powder.

A Soxhlet and a distillation assembly was used for ethanolic extraction of the dye. An open bath beaker dyeing machine equipped with programmable control of temperature was used to carry out all dyeing studies. Silk and Polyester/Cotton (67/33) blend fabrics were used.

All solvents, reagents, and chemical mordants such as alum, ferrous sulphate, copper sulphate, potassium dichromate and stannous chloride used were of laboratory grade.

The absorbance of dyeing solution was measured using a Shimadzu- UV visible spectrophotometer and K/S values and CIE L*a*b* values were measured on Premier Colour Scan Spectrophotometer.

2.2. Extraction of colourant and identification of colour component

The powdered dye material was extracted with ethanol for 8 hours using a Soxhlet extractor. The reason for this type of extraction is that aqueous extracts are not especially favorable for certain dye plants which contain flavonoids, anthraquinones and aglycones. These compounds are poorly soluble in water and therefore are extracted only partially [4].

Dried *Sesbania aculeata* plant material (100 gms) were crushed and dispersed in ethanol (400 ml) and heated to 60°C in a round bottom flask attached to the soxhlet. The extract was then filtered, and the filtrate was evaporated to near dryness using a distillation assembly at 50°C and the extract was obtained in purified form. The ethanol was recovered and reused in the process. Distilled water was added to this extract in the proportion of 1:4. The solution was stirred to a considerable extent to avoid formation of lumps in this solvent-aqueous dye extract.

The absorbances of the dye solutions were measured on the spectrophotometer in order to identify the compounds present.

2.3. Preparation of the fabrics for dyeing

For silk fabrics, degumming was carried out with solution containing 2 g/l of non-ionic detergent for 30 min. The scoured material was thoroughly washed with tap water and dried at room temperature. It was soaked in distilled water prior to dyeing or mordanting.

The polyester cotton blended fabrics were scoured with a solution containing 5 g/l mild detergent for 1 hour, washed, rinsed thoroughly and dried in air to remove all the impurities and starch present.

2.4. Mordanting

The scoured silk and polyester-cotton blended fabrics were mordanted by different metal mordants using pre-mordanting, simultaneous and post-mordanting methods in concentration of 1-2%.

To prepare mordant, it was first mixed with cream of tartar (potassium hydrogen tartrate) with little boiling water (50 ml) and volume was made up with remaining required water (150 ml). The mordant was dissolved in water to make the liquor ratio 1:50. The wetted sample was introduced into the mordant solution and then it was heated. Temperature of the dye bath was raised to 60°C over half an hour and left at that temperature for another 30 minutes. The mordanted material was then rinsed with water thoroughly, squeezed and dried.

2.5. Dyeing

A step wise dyeing of pre-treated, simultaneous-treated and post-mordanted fabrics (silk and polyester cotton blend) with five different mordants was carried out in a dye bath for three hours at a temperature between 60- 65°C, keeping the M: L ratio as 1:40. Dyed fabric was dried and then dipped in 2% sodium chloride solution (brine) at room temperature for 1 hour for fixing. The dyed material was washed thoroughly in cold water to get rid of extra dye.

2.6. Colour Measurement

Colorimetric data of the dyeing process were obtained using a spectrophotometer interfaced to a computer. The colour yield of both dyed and mordanted samples were evaluated by light reflectance measurements using Premier Colourscan Machine.

The colour strength (K/S value) was assessed using the Kubelka - Munk Equation: [5]
K/S = (1 - R)² / 2R
where R is the decimal fraction of the reflectance of dyed fabric.

The CIE L*a*b* values were ascertained for five mordants and three different mordanting conditions. Chroma (C) is a measure of intensity or saturation of colour and Hue angle (H) is derived from the two coordinates a* and b*.

3. Results and Discussions

3.1. Chemical composition of the Colourant
The ethanolic dye extract was dissolved in a suitable solvent system (water) and scanned through on Shimadzu UV Spectro, Spectrophotometer. Maximum wavelength of the dye was measured and the compounds present in the extracts were interpreted (refer Figures 3.1 and 3.2).

From Figure 3.1, obtained on a spectrophotometer, the λ max of the ethanolic dye extract in the UV range was found to be 268 nm., which falls in the spectral range of Flavonoids which is 200-500 nm. In the visible region the λ max was 666 nm., through which the presence of chlorophyll compound is confirmed. Therefore it may be interpreted that the ethanolic extract of the Sesbania aculeata plant contains flavonoids and chlorophyll compounds.

3.2. Colours obtained from dyeing with Sesbania aculeata
After the dyeing process was complete, different shades were obtained on silk and polyster-cotton blend through five mordants and three different mordanting conditions. Ethanolic extract rendered light to dark shades of green, sap green, khaki, yellowish green, leaf green, army green and bottle green on the dyed fabrics. Different shade cards prepared on Premier Colour Scan Spectrophotometer are shown as in Figure 3.3 for silk & 3.4 for polyester-cotton.

3.3. Evaluation on the basis of mordants and mordanting methods used
Five different mordants used in the dyeing process resulted in different range of shades and tints. Shades of green and grey and brown were obtained. It was observed that varied intensities of colour were obtained.
by change of mordant on dyeing with ethanolic extract of *Sesbania aculeata*. Usually tans and dark shades were obtained through sulphates and chrome while chlorides and alum gave lightest of creams and their tints. Sulphates i.e. ferrous sulphate and copper sulphate when used gave the best dark range of browns and greens on silk fabric. Shades having less depth but more variation were obtained in case of Polyester-cotton blend. The rating of the mordants on the basis of shade achieved was as follows - Fe → Cu → K → Sn → Al (refer Figure 3.5).

Figure 3.5: Ranking of mordants on the scale of 1-5 on the basis of depth of colour obtained

It was observed that the pre-mordanting technique with metal mordants gave the best results in terms of shades achieved. Since the pre-mordanting method forms an insoluble complex between dye molecule and metal mordant, higher affinity is acquired. Simultaneous-mordanting and post-mordanting method gave average dyeing results in terms of brightness of shades achieved as the mordant does not have enough chance to act upon the fabric (refer Figure 3.6).

3.4. Optimization of mordants with K/S and colour hue changes

Different mordants were used in 1-2% concentration keeping in mind the toxicity factor of some mordants, particularly copper and chromium. Varied hues were obtained from pre-mordanted, simultaneous and post-mordanted silk and polyester cotton fabrics with alum, CuSO₄, FeSO₄, K₂Cr₂O₇ and SnCl₂ when dyed with aqueous extract of *Sesbania aculeata*. As shown in Tables 3.1 and 3.2, the different mordants not only cause difference in hue colour and in L* values and brightness index values but also shows significant changes in K/S values.

Table 3.1: L* a* b* C* H* values for pre-mordanted, simultaneous & post-mordanted silk fabric dyed with ethanolic extract of *Sesbania aculeata*

<table>
<thead>
<tr>
<th>Mordant</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>C*</th>
<th>H*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Silk)</td>
<td>50.833</td>
<td>-3.322</td>
<td>20.791</td>
<td>21.055</td>
<td>99.111</td>
</tr>
<tr>
<td>Alum</td>
<td>49.734</td>
<td>-4.490</td>
<td>18.580</td>
<td>19.226</td>
<td>104.919</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>45.969</td>
<td>-1.615</td>
<td>11.049</td>
<td>11.166</td>
<td>98.349</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>43.138</td>
<td>1.181</td>
<td>1.627</td>
<td>2.010</td>
<td>54.003</td>
</tr>
<tr>
<td>Pot. dichromate</td>
<td>50.767</td>
<td>-2.323</td>
<td>20.818</td>
<td>20.947</td>
<td>96.401</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>51.519</td>
<td>-4.486</td>
<td>22.242</td>
<td>22.690</td>
<td>101.435</td>
</tr>
</tbody>
</table>

Simultaneous Mordanting

<table>
<thead>
<tr>
<th>Mordant</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>C*</th>
<th>H*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Silk)</td>
<td>51.440</td>
<td>-3.404</td>
<td>20.878</td>
<td>21.154</td>
<td>99.293</td>
</tr>
<tr>
<td>Alum</td>
<td>50.137</td>
<td>-3.405</td>
<td>18.097</td>
<td>18.415</td>
<td>100.688</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>49.145</td>
<td>-8.251</td>
<td>15.900</td>
<td>17.913</td>
<td>117.451</td>
</tr>
<tr>
<td>Pot. dichromate</td>
<td>49.715</td>
<td>-4.319</td>
<td>16.869</td>
<td>17.413</td>
<td>104.391</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>52.921</td>
<td>-4.345</td>
<td>23.958</td>
<td>24.349</td>
<td>100.311</td>
</tr>
</tbody>
</table>

Post Mordanting

<table>
<thead>
<tr>
<th>Mordant</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>C*</th>
<th>H*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Silk)</td>
<td>49.917</td>
<td>-3.532</td>
<td>20.817</td>
<td>21.115</td>
<td>99.662</td>
</tr>
<tr>
<td>Alum</td>
<td>48.748</td>
<td>-5.425</td>
<td>18.025</td>
<td>18.286</td>
<td>106.778</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>47.951</td>
<td>-10.588</td>
<td>15.838</td>
<td>19.051</td>
<td>123.786</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>46.049</td>
<td>-3.086</td>
<td>13.049</td>
<td>13.409</td>
<td>103.336</td>
</tr>
<tr>
<td>Pot. dichromate</td>
<td>46.606</td>
<td>-6.337</td>
<td>18.445</td>
<td>19.503</td>
<td>108.989</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>49.369</td>
<td>-5.558</td>
<td>19.364</td>
<td>20.154</td>
<td>106.127</td>
</tr>
</tbody>
</table>

Table 3.2: L*, a*, b*, C*, H* values for pre-mordanted, simultaneous & post-mordanted silk fabric dyed with ethanolic extract of *Sesbania aculeata*
Table 3.2: L* a* b* C* H* values for pre-mordanted, simultaneous & post-mordanted polyester-cotton fabric dyed with ethanolic extract of Sesbania aculeata

<table>
<thead>
<tr>
<th></th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>C*</th>
<th>H*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-mordanting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (Poly+Cot)</td>
<td>69.886</td>
<td>-5.246</td>
<td>10.353</td>
<td>11.606</td>
<td>116.897</td>
</tr>
<tr>
<td>Alum</td>
<td>72.860</td>
<td>-7.292</td>
<td>18.619</td>
<td>19.996</td>
<td>111.415</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>70.656</td>
<td>-5.538</td>
<td>13.568</td>
<td>14.655</td>
<td>112.231</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>69.428</td>
<td>-0.721</td>
<td>11.379</td>
<td>11.402</td>
<td>93.660</td>
</tr>
<tr>
<td>Pot. dichromate</td>
<td>71.814</td>
<td>-2.652</td>
<td>16.901</td>
<td>17.108</td>
<td>98.950</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>70.546</td>
<td>-4.468</td>
<td>12.271</td>
<td>13.122</td>
<td>110.774</td>
</tr>
<tr>
<td>Simultaneous Mordanting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (Poly+Cot)</td>
<td>69.765</td>
<td>-5.602</td>
<td>10.605</td>
<td>11.994</td>
<td>117.870</td>
</tr>
<tr>
<td>Alum</td>
<td>69.432</td>
<td>-2.917</td>
<td>9.028</td>
<td>9.488</td>
<td>107.935</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>70.202</td>
<td>-7.794</td>
<td>11.838</td>
<td>14.173</td>
<td>123.383</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>69.678</td>
<td>-5.997</td>
<td>10.570</td>
<td>12.153</td>
<td>119.593</td>
</tr>
<tr>
<td>Pot. dichromate</td>
<td>70.000</td>
<td>-3.941</td>
<td>12.096</td>
<td>12.722</td>
<td>108.075</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>69.620</td>
<td>-5.414</td>
<td>9.069</td>
<td>10.562</td>
<td>120.860</td>
</tr>
<tr>
<td>Post Mordanting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (Poly+Cot)</td>
<td>69.587</td>
<td>-5.606</td>
<td>11.244</td>
<td>12.564</td>
<td>116.525</td>
</tr>
<tr>
<td>Alum</td>
<td>69.919</td>
<td>-7.416</td>
<td>11.863</td>
<td>13.990</td>
<td>122.034</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>70.099</td>
<td>-10.274</td>
<td>11.635</td>
<td>15.522</td>
<td>131.465</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>69.129</td>
<td>-2.938</td>
<td>11.091</td>
<td>11.474</td>
<td>104.867</td>
</tr>
<tr>
<td>Pot. dichromate</td>
<td>69.315</td>
<td>-5.508</td>
<td>11.087</td>
<td>12.380</td>
<td>116.444</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>71.016</td>
<td>-6.925</td>
<td>14.399</td>
<td>15.490</td>
<td>115.804</td>
</tr>
</tbody>
</table>

Through L* a* and b* values it can be seen that mordants which show higher values of L* show lighter shades while lower L* values signify deeper shades for the dyed fabrics. Similarly, negative a* and negative b* represent green and blue respectively. These values indicate that the tintorial value of this natural dye is high in case of silk dyeing. The relative comparison of both the silk and polyester blended fabrics show least K/S value in terms of dye absorption and the intensity of the shades in case of the blended fabrics. The review suggests that the natural dyes do not have much affinity for synthetics or their blends [6]. Different mordants show change in K/S values as shown in Figures 3.7 and 3.8.

3.5. Fastness of the dyed samples

The dyed samples were tested for wash fastness and grey scale rating was given. Good wash fastness was achieved in pre-mordanted silk and polyester cotton blend with fastness grade of 4 and 5 when compared with other mordanting techniques. The pre-mordanting method forms an insoluble complex between dye molecule and metal mordant resulting in higher affinity (Refer Tables 3.3 and 3.4). The wash fastness of the dyed samples was excellent whereas rubbing fastness was good. Average to good light fastness was observed in samples dyed with this dye.
Table 3.3: Fastness properties of silk dyed with ethanolic extract of Sesbania aculeata

<table>
<thead>
<tr>
<th>Ethanolic Extract</th>
<th>Fastness Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wash</td>
</tr>
<tr>
<td>Silk Un-mordanted</td>
<td>4</td>
</tr>
<tr>
<td>Pre-Mordanting</td>
<td>Wash</td>
</tr>
<tr>
<td>Alum</td>
<td>4.5</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>3.5</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>4</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>4</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>3.5</td>
</tr>
<tr>
<td>Simultaneous- Mordanting</td>
<td>Wash</td>
</tr>
<tr>
<td>Alum</td>
<td>4</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>3.5</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>4</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>4</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>4</td>
</tr>
<tr>
<td>Post-Mordanting</td>
<td>Wash</td>
</tr>
<tr>
<td>Alum</td>
<td>4</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>3</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>3.5</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>3.5</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3.4: Fastness properties of polyester-cotton dyed with ethanolic extract of Sesbania aculeata

<table>
<thead>
<tr>
<th>Ethanolic Extract</th>
<th>Fastness Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wash</td>
</tr>
<tr>
<td>Polyester-Cotton Un-mordanted</td>
<td>4</td>
</tr>
<tr>
<td>Pre-Mordanting</td>
<td>Wash</td>
</tr>
<tr>
<td>Alum</td>
<td>4.5</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>3.5</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>4</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>4.5</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>3.5</td>
</tr>
<tr>
<td>Simultaneous-Mordanting</td>
<td>Wash</td>
</tr>
<tr>
<td>Alum</td>
<td>4</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>3.5</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>4.5</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>4</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>3.5</td>
</tr>
<tr>
<td>Post-Mordanting</td>
<td>Wash</td>
</tr>
<tr>
<td>Alum</td>
<td>4</td>
</tr>
<tr>
<td>Copper sulphate</td>
<td>3</td>
</tr>
<tr>
<td>Ferrous sulphate</td>
<td>4</td>
</tr>
<tr>
<td>Potassium dichromate</td>
<td>3.5</td>
</tr>
<tr>
<td>Stannous chloride</td>
<td>3.5</td>
</tr>
</tbody>
</table>

4. Conclusion

The environmental activists are supportive of using natural colourants as they are seen to be exploiting renewable resources, causing minimum pollution and having less risk to human health. There is currently demand for natural dyes in a niche market that could be expanded. The large scale production of textiles dyed with natural dyes is a new concept for textile industry. Aqueous extract of Sesbania aculeata yields shades with good fastness properties. The dye has good scope in the commercial dyeing of cotton and silk giving brilliant colours in conjunction with metal mor-
dyeing with pre-mordanting technique. Preparation of
dry powder from the leaves of *Sesbania aculeata* can
be a cheap source of natural dye having a good shelf
life.

References

Greener Method of Dyeing of Silk with Natural Colouring Matters

Asim Kumar Roy Choudhury*, Bapan Adak & Upasana Chatterjee

Govt. College of Engg. and Textile Technology, Serampore

Abstract

Silk is normally dyed with acid, metal-complex and selected direct dyes, many of them have been banned now. Eco-friendly, bio-degradable natural colours extracted from vegetables, trees and insects have poor affinity for textile substrate. They are generally applied along with mordants and metallic salts as fixing agent, many of which are not eco-friendly. In this project, wash-fast and light-fast shades on silk were obtained by applying natural colouring matters, namely tea, pomegranate, tesu flower and henna directly after aqueous extraction and in the absence of mordant or any other harmful chemical. Lower colour strength obtained by this greener method of dyeing may be compensated by saving time and energy as well as by elimination of the use of harmful chemicals.

Key words

Dyeing of Silk, Henna, Natural Colouring Matters, Tea, Tesu Flower.

1. Introduction

The dyes, more accurately known as colorants, are highly coloured substances and can be used to impart colour to infinite variety of materials described technically as substrates. Until the end of 19th Century, the colouring materials were all obtained from natural sources. The majority were of vegetable origin: plants, lichen and trees, though a few were obtained from insects and mollusc. Over thousands of years a large number of natural dyes had been used, but only a dozen or so proved to be practically useful, as most of these natural colouring matters are very unstable. From the beginning of 20th Century synthetic dyes of superior properties came in the market and slowly replaced natural dyes completely. After using synthetic dyes for about a century, people started realising that these dyes have spoiled our environment immensely. Most of the synthetic dyes have poor biodegradability and many of the dye intermediates are toxic and carcinogenic. As a result, a large number of synthetic dyes are banned and hunt for eco-friendly natural dyes have started at each corner of the globe [1].

On the other hand, natural colours extracted from vegetables, trees and insects are eco-friendly and biodegradable. However, the extraction of dyes from natural sources is a slow, inefficient, wasteful and very labour intensive process. They are generally applied along with mordants which have affinity for both substrate and dye. The water-soluble mordants are subsequently fixed or insolubilised by metallic salts such as potassium dichromate, copper sulphate, aluminium salts etc. Many of these salts are not eco-friendly.

The present work is an attempt to study the possibilities of application of aqueous extract of natural colouring matters directly by-passing tedious extraction procedure. Earlier studies by the author showed that dyeing with these substances without mordant on cotton and jute were not satisfactory due to poor fastness and dullness of shades. However, silk and wool inherently contain several substances which may act as mordant. Silk has its own lustre and hence dullness of shade is not a constrain for application of natural dyes on silk. Silk materials are generally used and washed under mild conditions. Hence, relative is poor fastness properties of natural dyes may not be a barrier for their use on silk. The proposed method is definitely a greener method of textile coloration eliminating the use of non-biodegradable and toxic dyes and chemicals.

A brief description of the natural colouring matters used in this project are discussed below.

1.1 Natural Colourants

1.1.1 Tea

The botanical name is *Camellia sinensis*. Tea leaves
contains many compounds, such as polysaccharides, volatile oils, vitamins, minerals, purines, alkaloids (e.g. caffeine) and polyphenols (tea tannins called catechins and flavonoids). It gives brown shade with acceptable fastness rating. The colour of tea liquor is entirely due to the the flavins and the arubigins [2]. Even exhausted tea leaves after extracting liquor for drinking contain considerable colouring matters for use in dyeing. A study revealed strong affinity of tea for wool and silk between pH 2-4. Light fastness and wash Fastness rating were reported to be 5 and washing fastness 4 respectively [3].

1.1.2 Pomegranate
The other names are anaar and dalim. The botanical name is *Punica granatum*. The dye is extracted from the fruit rind. The colour obtained exhibit good fastness to washing, rubbing and light. This dye is also used as mordant and is over-dyed with other natural dye to improve fastness [4]. The chemical composition of pomegranate rind is as follows: tannin-33%, sugar-10%, ash-11%. The tannin present in rind is of the myrobolan type. Pomegranate tannins are called as gallo tannins and elagic tannins. Pomegranate tannins have polyhydric alcohol structure (a direct class of dye). It gives yellowish shades with acceptable fastness rating.

1.1.3 Tesu Flower
Its common name is Flame of the Forest. It is also known as palas or kingsuk. The botanical name is *Butea monosperma*. Native to India, Flame of the Forest is a medium sized tree growing from 20 to 40 feet high. From January to March it truly becomes a tree of flame, a riot of orange and vermilion flowers covering the entire crown. Its dried flower is used to dye different textiles. It gives yellowish shades with acceptable fastness rating.

1.1.4 Henna
Henna is a flowering plant used since antiquity to dye skin, hair, fingernails, leather and wool. The name hena is also used for dye preparations derived from the plant and for the art of temporary tattooing based on those dyes. It is also known as Mehendi. The botanical name is Lawsonia inermis. Henna is a tall shrub or small tree which grows 2-6 m high.

1.2 Behaviour of Silk in Dyeing
Silk being a natural polypeptide fibre, its dyeing properties are very similar to those of other natural polypeptide fibre, wool as well as synthetic polypeptide fibre, nylon. They can be dyed by similar methods. Very fine fibrillar structure and high orientation of fibre molecules are the two characteristic properties of silk which determine its dyeing behaviour. The filament of Bombyx mori silk is only about 0.8-1.4 denier. These fine fibrils produce a large fibre surface. Firstly, this means that the colour yield on silk is on an average 50% of that of wool or synthetic polyamide fibres, so that about twice the amount of dye must be used to attain the same shade depth. Secondly, it means that a given dye or class of dyes produces lower wet fastness properties on silk than on the other two fibres in equivalent shade depths. The large fibre surface also leads to a high strike rate even at very low temperature of 20-30°C, comparable to the kinetically most rapid-dyeing carpet wool fibres. The fast strike rate is due to rapid saturation of the freely accessible amino groups at the fibre surface. The uptake of about 60-80% may occur at the very beginning of dyeing. Once the superficial saturation with dye takes place, the high orientation of the fibres which is actually a barrier to diffusion causes the remaining dye to be absorbed very slowly in the same way as a highly drawn polyamide fibre for the clothing sector [1].

2. Materials and Methods

2.1 Fabric:
Mulberry woven silk fabric was used in this project.

2.2 Preperation of Silk
Degumming was done to remove unwanted sericine gum from silk fabric by the following procedure:

Step 1 : The fabric was treated in a solution containing 5 g/l soap and 2 g/l soda ash (pH 10.5) at boil for 2 hours (M:L ratio - 1:40).
Step 2 : The fabric was subsequently treated with 5 g/l soap only at boil for another 2 hours (pH 8.5).
Step 3 : Cold Washing.
Step 4 : Treat the fabric with 5 g/l liquid ammonia at room temperature for 15 min.
Step 5 : Cold washing. The weight of mulberry silk in raw state and after degumming were 50 and 38 gm/sq. metre respectively.

2.3. Natural Colouring Matters Used
1) Three varieties tea namely - CTC, strong liquor type grains (C), Fennings, mixture of leafs (F), common tea bag for instant tea (T),
2) Pomegranate (P),
3) Tesu flower (TF),
4) Henna (H).
2.4. Mordant
Myrobolan:
Botanical name: *Terminalia chebula*
Commercial name: Harda or Haritaki
Myrobolan is dry fruit of tree *Terminalia chebula*. This is used as greenish yellow dye for textile. This is also used as natural mordant in many cases as substitute of tannic acid.

2.5. Fixing Agents
1) Potash alum, K₂SO₄, Al₂(SO₄)₃, 24H₂O (A)
2) T.R. Oil or sulphated castor oil (O)
3) Tartaric acid, [CH(OH)COOH]₂ (TA)
4) Ferrous sulphate, FeSO₄·7H₂O (FS)

2.6. Extraction of Colouring Matters
At first 600 ml water was taken for each extraction. The water was heated and then the required amount of colouring matter (depending on g/l required) was added into the water. The liquors were boiled for 20-25 minutes till it becomes about 500 ml. The volume was adjusted, whenever necessary and then the solution was filtered.

At first dyeing was carried out with three varieties of tea without mordant under acidic, alkaline and neutral conditions to compare the colour strength of three varieties immediately after extraction as well as after storage for 10-20 days.

In the second stage, tea (CTC), pomegranate, Tesu flower and henna (all 20 g/l) were dyed directly as well as after mordanting followed by treatment with fixing agents.

2.7 Mordanting and Fixing
Step 1 : In the mordanting step, the fabric was treated with 20 g/l extracted solution of Myrobolan (extraction procedure as above) at 80°C for 30 min (M:L ratio = 1:100).

Step 2 : In the fixation step, the mordanted materials was treated in a bath containing 20 g/l T.R. oil, alum, tartaric acid or ferrous sulphate (each separately) at 80°C for 30 min (M:L ratio = 1:100).

Step 3 : In the dyeing step, dyeing was done separately under acidic, alkaline and neutral conditions.

Step 4: This was followed by soaping and washing.

2.8. Dyeing Conditions
Weight of fabric - 2 gms
Material: liquor ratio - 1: 100
Dyeing was carried out by the extract of colouring matters (20 g/l) with and without mordant under the following three conditions at 85-90°C for 60 minutes:
1) Acidic (AC): 1% (o.w.m.) acetic acid
2) Alkaline (AL): 1%(o.w.m.) soda ash
3) Neutral (N): 10 g/l sodium chloride (no addition of acid or alkali).

The pH of the four colouring matters after extraction and after addition of acid and alkali are shown in Table 2.1.

Table 2.1. pH of the Extract of Natural Colouring Matters

<table>
<thead>
<tr>
<th>Colouring Matter</th>
<th>pH after extraction (20 gpl)</th>
<th>pH with soda ash</th>
<th>pH with acetic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea</td>
<td>5.8</td>
<td>7.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Pomegranate</td>
<td>4.5</td>
<td>5</td>
<td>3.7</td>
</tr>
<tr>
<td>Tesu flower</td>
<td>6.6</td>
<td>7.9</td>
<td>5.4</td>
</tr>
<tr>
<td>Henna</td>
<td>6.2</td>
<td>7.7</td>
<td>4.6</td>
</tr>
</tbody>
</table>

2.9. Soaping
After dyeing, the samples were washed with cold water followed by soaping with non-ionic detergent at 65°C for 15 minutes. Then the samples were washed and dried.

2.10. Evaluation of Fastness Properties
The washing fastness was measured following ISO washing fastness test method-3 (ISO 105 C01-C05) but soda ash was not used as natural dyes are very much sensitive to pH. Light fastness was tested by exposing samples in Xenotest 150S light fastness tester following standard method (BS: 1006 B02-1078). The rubbing fastness were tested using Crockmeter following standard method (BS 1006 X12: 1978).

2.11. Instrumental Measurements of Colour
The transmittance was measured using UV-VIS Transmittance Spectrophotometer made by Systronics (India). The reflectance values were measured by Color Eye 2180UV Spectrophotometer of Gretag Macbeth (USA).
3. Results and Discussion

3.1 Transmittance Curves

Transmittance of extracted solutions were measured with spectrophotometer from 340 nm to 740 nm. For proper measurement, it was necessary to dilute the dye solutions to varying extent. The dilution factor (DF) is a number (mentioned in transmittance curve) to indicate the degree of dilution made during measurement. DF = 8 means that the original solution was diluted 8 times.

Figure 3.1 Transmittance Curves of Different Varieties of Tea (DF = 8)

Figure 3.1 shows transmittance curves of three varieties of tea solutions (each 10 g/l concentration). The number in the legend indicate type and concentration in g/l e.g. C10 represent 10 g/l CTC grade tea. The transmittance curves show that the colour of Fennings (F10) and tea bag extracts (TB10) are quite close as both are in leaf form, while grain form CTC variety of tea (C10) is strongest and different in colour. The latter variety (CTC) was used for further studies.

3.2. Stability of the Extracted Solution

The stability of the extracted solution of natural colouring matters were tested by measuring transmittance characteristics of the extracted solution before dyeing i.e. fresh and after storing for 5 and 10 days.

Figure 3.2 Transmission Curves of Tea, F 10 (DF= 8) During Storage

Figure 3.2 shows the transmittance curves of tea (Fennings, 10 gpl) immediately after extraction, after 5 days and 10 days of storage. The transmittance decreased continuously with storage, but after 5 days of storage, the rate of degradation was slow. The same trend was observed for other two varieties also.

3.3. CIELAB Colour Diagrams

In CIELAB system colours are expressed by three parameters namely L* (lightness), a* (redness-greenness axis) and b* (yellowness-blueness axis). a* and b* values are plotted in a rectangular space along horizontal and vertical axes respectively.

Figure 3.3 Lightness of silk dyed wit Tea under Different Conditions

Figure 3.3 shows lightness of silk dyed with three varieties of tea of concentrations 10 g/l and 20 g/l (C10, F10, T10, C20, F20) under acidic (AC), alkaline (AL) and Neutral (N) conditions. Lightness values are rough indicators of shade depth. Samples dyed under acidic conditions showed little lesser lightness values indicating comparatively darker shades while samples dyed under alkaline conditions were having lighter shades. The lightness varied between 50.4 and 69.5 with an average of 59.9. The samples dyed with 10 g/l and 20 g/l tea have very less differences in lightness values. This means tea have poor build up properties.

Figure 3.4 (a*,b*) Diagram of Silk dyed with 3 varieties of Tea under 3 Conditions
Figure 3.4 shows CIELAB a*-b* diagram of silk samples dyed with different varieties teas at different concentrations. The CTC (C), fennings (F) and tea-bag (T) varieties are represented by square, circle and addition markers respectively. The unfilled and filled signs represent 10 g/l and 20 g/l samples, while big, medium and small markers represent acidic, alkaline and neutral conditions during dyeing respectively. The colours of silk dyed with tea under all conditions lie close to a straight line with a specific slope radiating through origin; only a few samples showed some deviation from average trend line. This means they all have similar hue angle or similar hue. In fact, the hue angles varied from 65.7° to 71.9° with an average value of 68°. The samples dyed with CTC tea (both 10 and 20 g/l) under acidic conditions are far away from the centre and represent higher chroma or saturation. The samples dyed under alkaline and neutral conditions are located nearer to the centre indicating lower chroma.

For pomegranate (Figure 3.7), samples mordanted and fixed with alum (A) under all three conditions showed higher hue angle i.e. nearer yellow (b*) axis or yellower in colour. Rest colours showed similar hue angle or hue.

For henna (Figure 3.9), the colours were quite distributed indicating wider colour variations. Without mordant (WM) samples are quite different and yellower in shades. Hue differences are also more for samples fixed with the same fixing agent but dyed under different condition (acidic/alkaline/neutral).

In all cases, silk dyed after mordanting and fixed with TA showed highest chroma followed by colours of samples dyed without mordant. Samples dyed with A-fixing agent showed deviation towards yellow axis.
3.4. Colour Strength

Colour strength value is a single numerical value related to the amount of colour absorbing material (colorant) contained in a specimen. Colour strength

\[
\frac{K}{S} = \frac{(1-R_\lambda)^2}{2R_\lambda}
\]

value of specimens measured on a spectrophotometer most often involves calculation of Kubelka-Munk function (K/S value) at one or more wavelength intervals (Eq. 4.1).

Where, \(K \) = coefficient of absorption
\(S \) = coefficient of scattering
\(R_\lambda \) = reflectance at wavelength \(\lambda \).

\[
WSUM = \frac{\sum_{\lambda} \left(\frac{(K_\lambda)}{(S_\lambda)} \times \lambda \times E_\lambda \right)}{n}
\]

WSUM denotes K/S weighted by visual functions namely standard colour matching functions, \(x_\lambda, y_\lambda, z_\lambda \) functions and SPD of D65 illuminant, \(E_\lambda \) and summed over all wavelengths within the visible spectrum, then divided by the number of wavelength intervals summed (Eq. 4.2).

\[
% \text{Colour strength} = \frac{WSUM_{\text{Sample}}}{WSUM_{\text{Standard}}} \times 100
\]

\(x_\lambda, y_\lambda, z_\lambda \) = tristimulus weighting values for selected observer (normally 10\(^{\circ}\))
\(n \) = number of wavelength interval used.

% Colour strength is the relative difference in colour strength between standard and a sample [5] (Eq. 4.3). Figures 3.10, 3.11, 3.12 and 3.13 graphically represent % strength WSUM values of the silk samples dyed with tea, pomegranate, tesu flower and henna respectively without mordant or mordanted and fixed with T.R.oil (O), potash alum (A), Tartaric acid (TA) and ferrous sulphate (FS). In each case, the % strength WSUM of samples dyed under acidic condition without mordant was considered as standard i.e. 100% strength.
3.4. Colour Strength

Colour strength value is a single numerical value related to the amount of colour absorbing material (colorant) contained in a specimen. Colour strength

\[
\frac{K}{S} = \frac{(1-R_\lambda)^2}{2R_\lambda}
\]

value of specimens measured on a spectrophotometer most often involves calculation of Kubelka-Munk function (K/S value) at one or more wavelength intervals (Eq.4.1).

Where, \(K = \) coefficient of absorption
\(S = \) coefficient of scattering
\(R_\lambda = \) reflectance at wavelength \(\lambda \).

\[
WSUM = \frac{\sum_{\lambda} \left(\left(\frac{K}{S} \right) \bar{x}_\lambda E_\lambda \right) + \left(\frac{K}{S} \right) \bar{y}_\lambda E_\lambda + \left(\frac{K}{S} \right) \bar{z}_\lambda E_\lambda }{n}
\]

WSUM denotes K/S weighted by visual functions namely standard colour matching functions, \(\bar{x}_\lambda, \bar{y}_\lambda, \bar{z}_\lambda \) functions and SPD of D65 illuminant, \(E_\lambda \) and summed over all wavelengths within the visible spectrum, then divided by the number of wavelength intervals summed (Eq. 4.2).

\(E = \) Spectral power distribution of illuminant (normally D65)

\[
\% \text{Colour strength} = \left(\frac{WSUM_{\text{Sample}}}{WSUM_{\text{Standard}}} \right) \times 100
\]

\(\bar{x}_\lambda, \bar{y}_\lambda, \bar{z}_\lambda = \) tristimulus weighing values for selected observer (normally 10°)

\(n = \) number of wavelength interval used.

\% Colour strength is the relative difference in colour strength between standard and a sample [5] (Eq. 4.3). Figures 3.10, 3.11, 3.12 and 3.13 graphically represent % strength WSUM values of the silk samples dyed with tea, pomegranate, tesu flower and henna respectively without mordant or mordanted and fixed with T.R.oil (O), potash alum (A), Tartaric acid (TA) and ferrous sulphate (FS). In each case, the % strength WSUM of samples dyed under acidic condition without mordant was considered as standard i.e.100% strength.
In most of the cases, samples dyed under acidic conditions (with or without mordant) showed highest colour strengths compared to samples dyed under alkaline and neutral conditions. Except for pomegranate, the colour depth of samples mordanted and treated with fixing agent showed much higher colour strength (roughly 130-200%). The colour strength is more than double with TA and A in case of henna. In case of pomegranate, the colour strength was very poor for all mordanted samples, probably because it is mordant itself and further mordanting has not improved the situation.

For all colours, samples dyed after mordanting and fixed with FS showed highest colour strength, because most of the shades were almost black.

Washing, light and rubbing fastness properties of silk dyed with tea and pomegranate are shown in Table 3.1 and those for tesu flower and henna in Table 3.2.

3.5. Washing Fastness

The washing fastness assessment by following standard method at the first instance were very much problematic because the shades of most of the dyed silk materials (except those dyed using ferrous sulphate as fixing agent) darkened during washing fastness test with 5 g/l soap even in the absence of soda ash and showed sharp contrast against original samples. The apparent fastness gradings were very poor (1.5-3.0) though there was no actual fading of colour.

But when these samples were washed for second time following the same washing method, little or no change in colour was observed during test and the ratings improved to 4.5-5 in most cases. Washing fastness properties of silk dyed with tea and pomegranate, with or without mordanting and irrespective of the fixing agent, were excellent in most cases (grading of 4.5-5 in general except with ferrous sulphate fixing agent). Staining properties of silk dyed with tea and pomegranate on silk and cotton were excellent - grading of 4.5-5 i.e. no staining.

The washing fastness properties of the silk samples dyed with tesu flower and henna were moderate to excellent in most cases (4-5). However, in some cases, grading was as poor as 2-3. But the poor grading followed no specific trend i.e. they were distributed randomly. The reason for poor grading in some cases may be due to further darkening of colour during washing.
Table 3.1. Fastness Properties of Silk Dyed with Tea and Pomegranate

<table>
<thead>
<tr>
<th>Mordant</th>
<th>Fixing agent</th>
<th>Colouring matter: Tea</th>
<th>Washing fastness</th>
<th>Light fastness</th>
<th>Rubbing fastness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC CSS CSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AC</td>
<td>4.5 5 5 6</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AL</td>
<td>4.5 5 5 6</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>N</td>
<td>5 5 6 5.5</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AC</td>
<td>5 4 4.5 6</td>
<td>7 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AL</td>
<td>5 4 4.5 6</td>
<td>4.5 5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>N</td>
<td>5 4 4.5 6</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AC</td>
<td>5 5 5 5</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AL</td>
<td>5 5 5 5</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>N</td>
<td>5 5 5 5</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AC</td>
<td>5 4.5 4 4</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AL</td>
<td>5 4.5 4 4</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>N</td>
<td>5 4.5 4 4</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AC</td>
<td>5 5 5 5</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AL</td>
<td>5 5 5 5</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>N</td>
<td>5 5 5 5</td>
<td>6 5.5</td>
<td></td>
</tr>
<tr>
<td>Colouring matter: Pomegranate (Dalim)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AC</td>
<td>5 5 4 1, darker</td>
<td>5 4.5</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AL</td>
<td>4.5 5 4.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AC</td>
<td>5 5 4.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AL</td>
<td>5 5 4.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>N</td>
<td>5 5 4.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AC</td>
<td>5 5 3.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AL</td>
<td>5 5 3.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>N</td>
<td>5 5 3.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AC</td>
<td>5 5 3.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AL</td>
<td>5 5 3.5 1, darker</td>
<td>4.5 4.5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>N</td>
<td>5 5 3 1, darker</td>
<td>4.5 5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>AC</td>
<td>5 5 4.5 7</td>
<td>5 5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>AL</td>
<td>5 5 4.5 7</td>
<td>5 5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>N</td>
<td>5 5 4.5 7</td>
<td>5 5</td>
<td></td>
</tr>
</tbody>
</table>

Note (for both Tables 3.1 and 3.2): O = T.R. Oil, A = Alum, T = Tartaric Acid, F = Ferrous Sulphate, AC = Acidic Condition, AL = Alkali Condition, N = Neutral Condition + Salt, CC = Colour change, CSS = Colour Staining on silk, CSC = Colour Staining on Cotton.
Table 3.2. Fastness Properties of Silk Dyed with Tesu Flower and Henna

<table>
<thead>
<tr>
<th>Mordant</th>
<th>Fixing agent</th>
<th>Dyeing condition</th>
<th>Washing fastness</th>
<th>Light fastness</th>
<th>Rubbing fastness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CC</td>
<td>CSS</td>
<td>CSC</td>
</tr>
<tr>
<td>Colouring matter: Tesu flower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AC</td>
<td>4.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AL</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>N</td>
<td>2.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AC</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AL</td>
<td>4.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>N</td>
<td>3</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AC</td>
<td>4</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AL</td>
<td>4.5</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>N</td>
<td>4</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AC</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AL</td>
<td>5</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>N</td>
<td>4.5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>AC</td>
<td>3</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>AL</td>
<td>2.5</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Colouring matter: Henna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AC</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>AL</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>N</td>
<td>4.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AC</td>
<td>3.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>AL</td>
<td>4.5</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>O</td>
<td>N</td>
<td>3.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AC</td>
<td>4</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>AL</td>
<td>4.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>A</td>
<td>N</td>
<td>4</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AC</td>
<td>5</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>AL</td>
<td>5</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>T</td>
<td>N</td>
<td>5</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>AC</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>AL</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
fastness test. The samples dyed under acidic conditions mostly showed good to excellent fastness. Properties. Ferrous sulphate mordanted samples particularly showed poor fastness properties. Staining properties on silk and cotton were again excellent for silk dyed with tesu flower and henna.

3.6. Light fastness

◆ The samples dyed with all natural colorants shows highest light fastness in presence of ferrous sulphate as fixing agent.
◆ The light fastness of the most of the samples dyed with tea and henna were good to excellent.
◆ All the samples dyed with pomegranate except those dyed using ferrous sulphate showed very poor fastness to light as the shades become darker on exposure to light. This is probably because of the presence of a good amount of tannic acid in the dye.
◆ All samples dyed after mordanting and fixed with alum showed poor light fastness due to darkening of shades.
◆ For Tesu flower light fastness rating varied widely from poor to very good.
◆ Light fastness of unmordanted samples were good to excellent.

3.7. Rubbing fastness
Rubbing fastness ratings, both wet and dry, were excellent (4.5-5) for all silk samples dyed with different natural colouring matters with and without mordant.

4. Conclusion
Many natural colouring matters can be used directly after extracting them simply with boiling water. The extracted liquor may be stored for a few days without any problem.

Silk dyed with tea, pomegranate, tesu flower and henna with or without mordanting lie between +a* (red) and +b* (yellow) axes, indicating all yellow-red in colour. Samples mordanted with ferrous sulphate are almost black in colour and they lie very near to centre of a*-b* diagram indicating absence of hue or chroma.

Grain form and CTC variety of tea provided strongest colour in solution as well as on silk. It provided brightest shade i.e. highest chroma, particularly when dyed under acidic condition. Silk samples dyed with three varieties of tea under three pH conditions showed similar hue angle or similar hue. Tea and tesu solutions have higher optical density than that of henna.

For tea, silk dyed without mordant and with mordant and subsequently fixed with T.R. Oil, tartaric acid, alum all were very close in colour, they have similar hue angle and hue. This is true for silk dyed with pomegranate also, except for the samples mordanted and fixed with alum. For tesu flower, samples mordanted and fixed with tartaric acid showed different colour, rest are similar in colour. For henna the colours are quite distributed indicating wider colour variations.

The samples dyed under acidic condition (with or without mordant) showed highest colour strengths compared to samples dyed under alkaline and neutral conditions. The colour depth of samples mordanted and treated with fixing agent showed much higher colour strength (roughly 130-200%) in all cases except for pomegranate. This means that dyeing without mordanting and fixing may require considerably higher amount of natural colouring matters as compared to mordanted and subsequently fixed samples. The samples dyed and fixed with ferrous sulphate was quite different in colour.

Natural colours are very sensitive to pH. The colours darken during soap boiling for wash fastness test, though there was no actual fading of colour. The wash fastness was then re-tested after treating the samples with soap. For most of the samples, the shades did not darken during second soaping.

Washing fastness properties of silk dyed with tea and pomegranate, with or without mordanting and irrespective of the fixing agent, were excellent in most cases. The washing fastness properties of the silk samples dyed with tesu flower and henna were moderate to excellent in most cases (4-5) and very poor (2-3) in some cases due to further darkening of colour.

The light fastness of most of the samples dyed with tea and henna were good to excellent. For Tesu flower, light fastness rating varied widely from poor to very good. With pomegranate the shades become darker in exposure to light. Light fastness properties of unmordanted samples are good to excellent. Rubbing
fastness ratings, both wet and dry were excellent for all samples.

The most important observation is that for all natural colouring matters under study, the silk dyed under acidic condition without mordant showed excellent washing fastness, especially for tea and pomegranate. Lower fastness was observed for silk dyed with tesu flower and henna, when dyed under alkaline condition (also under neutral condition in case of tesu flower).

It can, therefore, be concluded that silk can be dyed directly with natural colouring matters without mordant to obtain wash-fast and light-fast shades. Lower depths by such methods may be compensated by elimination of mordanting and fixing steps saving time and energy and eliminating use of harmful chemicals. The process is greener as compared to conventional method of dyeing pre-mordanted textile materials with natural colours.

References

Extraction of Ecofriendly Dye from Industrial Waste and its Application in Textile Dyeing

S.V. Agarkar*, S.K. Vyas & S.S. Bagade
Anuradha Engineering College

S.T. Ingle
School of Environment and Earth Science

Abstract
The colourfastness properties of the dye extracted from Curcumin industrial waste on cotton fabrics have been studied using different concentrations like 3%, 6% and 9% of the various mordents such as alum and Harda. The wash, rubbing, light and perspiration fastness of the dyed sample have been evaluated. It is found that Curcumin waste dye can be successfully used for dyeing of cotton fabrics. With regards to colourfastness, tested samples exhibit good fastness to washing, rubbing, light and perspiration fastness except for sample premordanted using Harda which shows good fastness properties in alkaline media.

Keywords
Colourfastness, Curcumin waste, Extraction of natural dye, Mordant.

1. Introduction
Nature, unlike any other source, has a wonderful visual device for sensing the seven shades of the colour spectrum. Hence, it is considered as the most abundant source of colours. Since the early dawn of civilization and through the history of the human race, colours have played a significant role in man's individual, family and social life [1, 2]. Archaeological findings have shown that natural colours were being used in dyeing, printing, painting and preparing cosmetics among primitive communities throughout the world [3]. Natural dyes have been vital source of coloration by craft dyers, printers since time immemorial. The colouring matters were procured form roots, stems, leaves, flowers (plant origin) besides this, many dyes were procured from animals and minerals of natural origin. Most natural dyes are non-substantive dyes, which means that they have very little colouring power within themselves and require the aid of mordant to penetrate into the fiber [4, 5].

Today, dyeing is a complex, specialized science. Dye-stuffs are now produced from synthetic compounds. This means that costs have been greatly reduced and certain application and wear characteristics have been greatly enhanced. But manufacturing of synthetic dyes involve many carcinogenic chemicals and the effluents which are discharged in the river or emitted into the atmosphere this results in ecological imbalance, pollution problem and disturbed environment due to the ample usage of hazardous chemicals and particularly synthetic dyes [6,7]. As a result, attention moves towards scope of natural dyes. Present work was aimed at developing ecofriendly natural dyes from Curcumin waste from Industry for textile application and study conducted to assess colourfastness of dyed samples.

1.1. Curcumin
Curcuma Longa (Turmeric) is the main species of commerce and is cultivated for its rhizome in India, China and also in Sri Lanka, Indonesia, Jamaica, and Peru. India is the major grower with almost 80,000 hectares under this crop producing 1,44,000 tonnes per annum. The plants are grown for powder, oleoresin and curcumin. Genetic improvements have been attempted and high yielding curcumin varieties have been developed through tissue culture techniques [8, 9].

In addition to being an important culinary spice, the dried rhizomes of turmeric also have a long history of medicinal use. Traditionally, turmeric has been used for a variety of purposes. It has found use as an appetite stimulant, a digestive aid, a general tonic, as well as for treating diarrhea, dyspeptic complaints, flayulence, and
gallbladder complaints. It is also commonly used as an anti-spasmodic in different ethnic communities. The yellow-orange color of turmeric is derived from curcumin, bright yellow, phenolic pigment. Turmeric, commonly known to be an anti-inflammatory herbal remedies producing far fewer side effects than conventional pain relievers [8].

Curcumin is the main biologically active phytochemical compound of turmeric. Curcumin consists of a mixture of three naturally occurring curcuminoids, curcumin (diferuloylmethane), demethoxycurcumin, and bisdemethoxycurcumin.

Curcumin has got wide uses and applications in the field of pharmaceuticals especially in the field of herbal medicine. In the present study we have collected waste from herbal pharmaceutical industry. The solid waste management is the problem of the industry. This waste is ecofriendly as it is generated from curcumin. Haldi oil utilized for medicinal value was extracted from curcumin by using isopropanol and then isopropanol was recovered by vacuum distillation so the waste is free from any added chemicals.

2. Materials and Methods

2.1. Material

In the present work, Curcumin waste from industry is collected for the extraction of the dye. 100% bleached cotton material is used for dyeing. Mordants like Alum and Harda are used. The other chemicals like acetic acid, common salt and sodium carbonate were used for the study.

2.2. Methods

2.2.1 Dye Extraction

The extraction of dye from Curcumin waste and its application to fabric is carried out. The industrial waste is in solid form. This waste is converted into fine powder and screened for removal of unwanted solid materials. The fine powder thus obtained is polyphenolic in nature & therefore it is insoluble in water. To make it soluble, base like sodium hydroxide is used. Curcumin waste powder is pasted with small amount of water and sodium hydroxide is added into the bath and the solution is boiled for 1 hour to facilitate quick extraction.

Then it was filtered and filtrate was collected in separate beaker.

2.2.2. Dyeing Procedure

The cotton fabric is dyed with dye extract by keeping M:L ratio as 1:10. Dyeing was carried out at 80°C and continued for 1 hour.

2.2.3. Mordanting

The cotton fabric samples were treated with different mordants like Alum and Harda by following method. Cotton fabric is pre mordant with alum and Harda by using 3%, 6% and 9% concentration at 80°C for 45 min keeping the material to liquor ratio (M:L=1:10). This mordanted fabric was used for dyeing without any washing. The pre-treated cotton fabric was introduced into dye bath containing required amount of dye ex-
tract and water. For better exhaustion, sodium chloride was added into the bath. Then dyeing was carried out for 1 hr at 80°C. The dyed samples were taken out, squeezed, washed with water and dried at room temperature.

2.2.4. Evaluation of colourfastness properties
Various fastness tests for dye extracted from Curcumin waste were carried out. These tests assess how permanent the dye is on the fabric.

Colour fastness to washing of the dyed fabric samples was determined by using BIS No IS - 3361-1979 wash fastness method. The wash fastness rating was assessed using grey scale by evaluating loss of depth of shade.

Colourfastness to rubbing (dry and wet) was assessed by using BIS No IS - 766-1988 Method by using manually operated crockmeter. In this test, the dyed specimen is rubbed 10 times using a crockmeter which has weighted a finger covered with the piece of undyed cotton cloth (5×5cm).

For wet rubbing, the cotton cloth is wetted out before being rubbed on the dyed sample. The cotton rubbing cloth is then examined for dye which may have been removed and assessed by using the grey scale for staining.

Perspiration fastness was assessed by using BIS No IS - 791-1983 Method; composite specimen was prepared by placing the test specimen between two adjacent pieces of cotton and stitched all among four sides.

The sample was soaked in the test solution (acidic) separately with M:L 1:50 for 30 min at room temperature. The sample was then placed between two glass plates of perspirometer under load of 4.5 Kg. The apparatus was kept in oven for 4 hr at 37°C. Then specimen was removed and dried in air at temperature not exceeding 60°C and samples were assessed for change in colour using grey scale.

Light fastness was determined by keeping samples in daylight, method is based on BIS No IS - 2454-1985. The samples were exposed to daylight for 4 hr. The fading of each samples were determined by using blue wool scale.

3. Results and Discussion

3.1. Preparation and Optimisation of Extract of Curcumin waste
Curcumin waste powder 1gm to 5gm is pasted with small amount of water Sodium hydroxide is added into the bath and solution is boiled for 1 hour to facilitate quick extraction. It was observed that colour of dye extract was yellow orange.

3.2. Dyeing Behaviour of the dye extract
The dye extracted was found to be suitable for cotton fabric. The cotton fabrics were dyed with chemical and natural mordants. It was observed that, the dye uptake was found to be good in premordanting method. Fastness properties of dye extracted from Curcumin waste are tabulated in Table 3.1

The dye extract was found to be suitable for cotton fabric. Various hues of colour were obtained from

<table>
<thead>
<tr>
<th>Concentration of Mordant</th>
<th>Washing Fastness</th>
<th>Rubbing Fastness</th>
<th>Perspiration</th>
<th>Light Fastness</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>Rating</td>
<td>Remark</td>
<td>Wet</td>
<td>Dry</td>
</tr>
<tr>
<td>100% CW</td>
<td>2</td>
<td>Poor</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3%</td>
<td>3</td>
<td>Fair</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6%</td>
<td>3</td>
<td>Fair</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9%</td>
<td>3</td>
<td>Fair</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

CW: Curcumin waste
premordanted cotton fabric with Alum and Harda.

The evaluation of colour fastness to washing, rubbing, perspiration and light using alum in aqueous medium is presented in Table 3.1 At 3% concentration of alum, washing fastness was fair, rubbing fastness in wet condition was fair and in dry condition, it was poor and perspiration fastness rating also was poor. At 6% concentration of alum, washing fastness is same as that of 3% concentration of alum. Rubbing fastness indicates fair fastness in wet and dry condition and perspiration fastness rating is also good. At 9% concentration of alum, washing fastness is same as that of 3% concentration of alum, rubbing fastness indicates fair fastness in wet and dry conditions and perspiration & light fastness ratings are good.

At 3% concentration of harada, washing fastness rating indicates good fastness as compared to alum concentrations, but rubbing fastness indicates poor fastness and perspiration fastness is also poor. At 6% concentration, it was found that washing and rubbing fastness are good and perspiration fastness is also good. At 9% concentration, it was found that washing fastness is fair.

Rubbing fastness ratings are fair in dry and wet conditions and perspiration fastness is fair. Light Fastness rating is also good. Among mordants, it was found that 6% concentration of harada gives better fastness properties as compared to alum mordant. It is found that Curcumin waste dye can be successfully used for dyeing of cotton fabrics.

4. Conclusion
In present research work it was found that Curcumin industrial waste can be used for colouring textiles. Various shades in various tones & hues can be obtained using chemical and natural mordant. The parameters like concentration of dye, temperature and timing for dyeing are also optimised for better results. With regards to colourfastness, tested samples exhibit good fastness to washing, rubbing, light and perspiration. Heavy metals such as antimony, arsenic cadmium and lead were not present in the dye extract so this dye will not cause any skin problem to wearer and also not pollute the environment.

Acknowledgements
The authors are thankful to management of AEC, Chikhli for providing laboratory facilities & special thanks to Konark Herbals and Healthcare, Mumbai for providing Curcumin Industrial waste for study.

Table 3.2 Colour fastness properties of Curcumin waste applied on cotton fabric sample using different concentration of Harada

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Washing Fastness</th>
<th>Rubbing Fastness</th>
<th>Perspiration</th>
<th>Light Fastness</th>
</tr>
</thead>
<tbody>
<tr>
<td>of Mordant</td>
<td>Rating</td>
<td>Remark</td>
<td>Rating</td>
<td>Remark</td>
</tr>
<tr>
<td>100% CW</td>
<td>2</td>
<td>Poor</td>
<td>2</td>
<td>Poor</td>
</tr>
<tr>
<td>3%</td>
<td>4</td>
<td>Good</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6%</td>
<td>4</td>
<td>Good</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9%</td>
<td>3</td>
<td>Fair</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

References

Textsmile

Insanity is doing the same thing, over and over again, but expecting different results.
- Narcotics Anonymous
Comfort Studies on Jute/Cotton Blended Fabrics

R. Prathiba Devi*, R. Rathinamoorthy
Department of Fashion Technology

&

J. Jeyakodi Moses
Department of Chemistry, PSG College of Technology

Abstract
In this research, an attempt has been made to blend the jute fibre with the cotton material. The blended yarn was used as a weft and the pure cotton yarn was used in warp. The produced fabric was treated with cellulase enzyme for softening purpose. Further the silicone-polyurethane finishes were applied on the fabric to improve the comfort properties. Hence this study reveals the effect of enzyme treatment with consecutive silicon-polyurethane softening treatment on comfort properties of Jute/Cotton union (warp - cotton; weft - Jute/Cotton) fabric. The results indicate that the enzyme treated, silicon-polyurethane finished fabric had significant (P < 0.05) improvement in all comfort properties like wicking, water absorbency, air and water vapour permeability, thermal conductivity.

Key words
Comfort properties, FTIR, Enzyme treatment, Jute/Cotton union fabric, Silicon-polyurethane.

1. Introduction
Jute is a lignocellulosic fiber with hemicellulose (24%), cellulose (60%) and lignin (14%) as the main constituents [1]. Jute is coarser variety of bast fibre which is available in inexhaustible quantities and at comparatively low prices and hence has the potential to replace several expensive fibres and scarce forest resources. It has inherent advantages namely agro-renewability, bio-degradability, good tensile strength and modulus, high moisture regain, good dyeability and low price [2].

Main inhibitions to the usage of jute are harsh feel, brittleness, variation in fiber length and difficulty to launder, these can be overcome by blending this fibre with other fibres and finishing. Hence the techniques of blending and softening could be utilized to upgrade the quality of jute and thus form a new class of jute based fabric having an expanding market within and outside the country. It is therefore necessary to raise awareness among users of jute and its blends, to promote its production as well as its usage. In this context, the comfort behavior of Jute/Cotton fabrics have been studied.

* All the correspondence should be addressed to,
R. Prathiba Devi
Department of Fashion Technology,
Coimbatore, Tamil Nadu. 641 004.
Email: prathiba17@gmail.com

FINISHING
flexible [14]. Researchers revealed that enzyme treatment of jute fibers leads to an increased pore volume (46.2%), a larger surface area of lignin accessible to the oxidant (30%), and hence leads to improved bleaching. They also noted that enzyme treatment increases transverse swelling (14%) and reduces bulk torsional rigidity (12.5%), making the fibers more flexible and therefore softer [15].

Fabric softeners such as cationic or nonionic surfactants are used in textile wet processing to improve fabric hand and mechanical properties. Adhesion of these softeners to the fiber surface is by a weak electrical attraction without any chemical linkage [16]. Durable silicone textile softeners confer additional performance properties on treated fabrics, such as improved wrinkle recovery, crease resistance and improved wear comfort [17, 18].

This study aims to develop a Jute/Cotton union fabric with Jute/Cotton blended thread in weft with two different ratios of jute and cotton namely 50/50 and 40/60. The developed fabrics were treated with cellulase enzyme and silicon-polyurethane softener to improve the comfort properties of the union fabric. In the second phase of the work, the finished union fabric were analysed for the improvement in comfort properties in terms of wicking, water absorption, water vapour permeability, air permeability and thermal conductivity. The statistical analysis (ANOVA) was also performed to ensure the significant changes in the comfort properties.

2. Materials and Methods

2.1. Materials

Jute/Cotton union fabric with cotton yarn in the warp and jute yarn in the weft direction with the following fabric specifications are used in this study as in Table 1.

<table>
<thead>
<tr>
<th>Table 2.1: Fabric specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>40/60 Jute/Cotton blend</td>
</tr>
<tr>
<td>EPI - 24</td>
</tr>
<tr>
<td>PPI - 21</td>
</tr>
<tr>
<td>Warp count - 60s Ne</td>
</tr>
<tr>
<td>Weft count - 35s Ne</td>
</tr>
<tr>
<td>Weight (mg/cm²) - 14.05</td>
</tr>
</tbody>
</table>

2.2. Methods

The union fabrics were subjected to the pre-treatments like desizing, scouring, bleaching and mercerisation [19]. To improve the softness, low stress mechanical properties and hand value, the fabrics were given two types of treatments, namely enzymatic and silicone-polyurethane finish. The chemicals and auxiliaries mentioned elsewhere in this study were of analytical grade. The enzyme used in the study was cellulase enzyme (supplied by Resil chemicals, India). The hot brand reactive dye used was supplied by Yoshiaki Chemicals Company Pvt. Ltd, India.

2.3. Enzymatic treatment

After the pre-treatments, the union fabrics were treated with enzyme to impart softness with the following recipe.

- Cellulase enzyme - 5% (owf)
- Acetic acid - 0.5% (owf)
- Temperature - 55°C
- Time - 30 minutes
- MLR - 1:20
 (owf - On weight of fabric)

2.4. Silicone polyurethane finish

After the cellulase enzymatic treatment the union fabrics were dyed with reactive dye. The amino functional based polymethylsiloxanes silicone softener treatment was given by Pad-dry-cure method on the reactive dyed union fabrics, with 10 gpl of amino silicone softener and 10 gpl of polyurethane solution at pH 6.0 (maintained by acetic acid) and temperature 40°C for 15 minutes with the pressure of 1 kg/cm² in order to get optimum pick-up of 0.8% owf. Then the fabrics were dried at 100°C for 3 min and cured at 150°C for 4 min in drying and curing chamber respectively.

3. Characterisation

3.1. SEM analysis

The SEM analysis was done (JOEL scanning electron microscope of model JSM-6390, Japan; 20kV, magnification 500 X) in order to study the surface structure of both the untreated and treated fabrics. It helps to determine the changes occurred in the fabric due to the application of softening finish.

3.2. FTIR spectra test

FTIR spectra (SHIMADZU spectrophotometer - USA) for both treated and untreated union fabric were measured to identify the groups present in the finishes.
3.3. Comfort property analysis
The treated Jute/Cotton union fabric was evaluated for comfort properties in terms of wicking (BS 3424), water absorption (AATCC 79: 2000), air permeability (IS 11056-1984), Water vapour permeability (ASTM E 96) and thermal conductivity [20].

3.4. Statistical analysis
To analyze the significant difference between low stress mechanical properties of untreated fabric and the fabrics treated with silicone - polyurethane softener, the critical difference at 95% probability level was calculated using ANOVA - single factor analysis.

4. Results and Discussion
The untreated and the finished Jute/Cotton fabrics were subjected to various tests to analyse the comfort and handle properties and the results are discussed below.

4.1 SEM analysis
SEM micrographs of treated and untreated fabrics taken at the magnification of 1500 X and 500 X are shown in figures. The primary function of fabric softening is to make the fabric surface smooth by coating the fibre as a thin film layer. Figure 4.1(a) and 4.2 (a) shows an untreated fibre with short fibres and rough edges; Figure 4.1(b) and 4.2 (b) indicates about the fibre coating and smoothing of the rough edges of fibers. It is also observed that treated fabric has smooth white layers of the silicone polyurethane finish. The polymer film is the main cause for changes on the surface and mechanical properties of the silicone-treated fabrics. The formation of the polymer film increases the uniformity of the surface and decreases the roughness [21].

4.2 FTIR analysis
Figure 4.3 and 4.4 shows FTIR spectrum of the 40/60 and 50/50 silicone polyurethane treated Jute/Cotton union fabrics respectively. From the spectrum, it is confirmed that the treated fabric shows evidence of deposition of silicone and polyurethane substance on the surface. The absorption peak in the region 1000 cm\(^{-1}\) to 1100 cm\(^{-1}\) of treated sample confirms the presence of Si-O and Si-O-Si group [22, 23]. This wavelength indicates the presence of silicone softeners on the fabric.

The absorption peak in the region of 3402 cm\(^{-1}\) represents the - NH stretching of the urethane group. The absorption in the region 1593 cm\(^{-1}\) represents the -N-H bonding and 1786 cm\(^{-1}\) indicates the formation of C=O stretching (free) of urethane group [24]. These wavelengths indicate the presence of PU on the surface of the treated fabric.
4.3. Wicking

The Table 2 shows the Wicking height of both untreated and treated Jute/Cotton union fabrics.

Table 4.2: Wicking ability of the treated and untreated Jute/cotton blends

<table>
<thead>
<tr>
<th>S.No.</th>
<th>40/60 Jute/Cotton</th>
<th>50/50 Jute/Cotton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated (cm)</td>
<td>Treated (cm)</td>
</tr>
<tr>
<td>1</td>
<td>5.8</td>
<td>7.65</td>
</tr>
<tr>
<td>2</td>
<td>5.85</td>
<td>7.7</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>7.7</td>
</tr>
<tr>
<td>4</td>
<td>5.75</td>
<td>7.8</td>
</tr>
<tr>
<td>Avg</td>
<td>5.8</td>
<td>7.7</td>
</tr>
</tbody>
</table>

When compared to the untreated fabric, wickability of treated fabric is improved significantly (P>0.05) 33% and 37% respectively for 40/60 and 50/50 Jute/Cotton blend. This is because of application of hydrophilic softener which increases the capillary flow in the fabric [25]. The removal of hydrophobic noncellulosic components from the fabric surface by enzyme treatment is another reason for the improved wicking [26].

4.4. Water Absorbency

The water absorbency of treated fabric is improved (P>0.05) 25% for 40/60 Jute/Cotton blend and 18% for 50/50 Jute/Cotton. This is due to application of silicone and polyurethane treatment which improves the spreading action of the fabric which will absorb more water.

Table 4.3: Water Absorbency of the Treated and untreated Jute/cotton blends

<table>
<thead>
<tr>
<th>S.No.</th>
<th>40/60 Jute/Cotton</th>
<th>50/50 Jute/Cotton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated (Sec)</td>
<td>Treated (Sec)</td>
</tr>
<tr>
<td>1</td>
<td>17.10</td>
<td>12.75</td>
</tr>
<tr>
<td>2</td>
<td>17.15</td>
<td>12.80</td>
</tr>
<tr>
<td>3</td>
<td>17.15</td>
<td>12.85</td>
</tr>
<tr>
<td>4</td>
<td>17.20</td>
<td>12.72</td>
</tr>
<tr>
<td>Avg</td>
<td>17.15</td>
<td>12.83</td>
</tr>
</tbody>
</table>

This will give more comfort to the wearer when the garment is worn next to skin. The cellulase enzyme is able to gain access to the cellulose, and in due process, removes hydrophobic noncellulosic components from the fabric surface thus the treatment of enzyme also helps to improve the water absorbency of treated material [27, 28].

4.5 Water Vapour Permeability

Table 4.4 shows the Water Vapour Permeability of both untreated and treated Jute/Cotton union fabrics. Water vapor permeability is an important parameter in evaluating comfort characteristics of a fabric, as it represents ability of transferring perspiration.

Table 4.4: Water Vapour Permeability of the Jute/cotton blends

<table>
<thead>
<tr>
<th>S.No.</th>
<th>40/60 Jute/Cotton</th>
<th>50/50 Jute/Cotton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated (%)</td>
<td>Treated (%)</td>
</tr>
<tr>
<td>1</td>
<td>6.55</td>
<td>7.75</td>
</tr>
<tr>
<td>2</td>
<td>6.69</td>
<td>7.85</td>
</tr>
<tr>
<td>3</td>
<td>6.82</td>
<td>7.82</td>
</tr>
<tr>
<td>4</td>
<td>6.65</td>
<td>7.87</td>
</tr>
<tr>
<td>Avg</td>
<td>6.67</td>
<td>7.83</td>
</tr>
</tbody>
</table>

The Water Vapour Permeability of treated fabric is increased significantly (P>0.05) i.e. 17 % and 13% respectively for 40/60 and 50/50 fabric. Two mechanisms can be considered for water vapour transfer through the fabric: one is through fabric pores and the second is through absorption by fabric and then evaporation from fabric surface [29]. In the second mechanism, there is increase in water vapour permeability.
because of the softening finish applied which increases the capillary transfer of water vapour through fibre bundles [30]. Further the SEM image (Figure 4.1 & 4.2) it is evident that the surface morphology is modified through the finish and enzyme treatment which reduces the roughness and hairiness of the fabric. This will increase the moisture vapour transmission through the fabric.

4.6. Air Permeability

The Table 4.5 shows the Air Permeability of both untreated and treated Jute/Cotton union fabrics.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>40/60 Jute/Cotton (cm³/cm²/s)</th>
<th>50/50 Jute/Cotton (cm³/cm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Treated</td>
</tr>
<tr>
<td>1</td>
<td>104.50</td>
<td>156.50</td>
</tr>
<tr>
<td>2</td>
<td>102.65</td>
<td>157.73</td>
</tr>
<tr>
<td>3</td>
<td>104.80</td>
<td>159.40</td>
</tr>
<tr>
<td>4</td>
<td>103.54</td>
<td>159.40</td>
</tr>
<tr>
<td>Avg.</td>
<td>103.87</td>
<td>157.85</td>
</tr>
</tbody>
</table>

The Air Permeability of treated fabric is significantly increased by 50% in case of 40/60 and 26% in the case of 50/50 blend in weft. This is because of the softening treatment which modifies the fabric surface by reducing roughness and hairiness which in turn will increase the space between the yarns. This fabric will have more air transfer due to the clean and smooth fiber edges. The application of different chemical treatments result in slight openness of the fabric which will increase the air permeability. This will enhance the comfort of the garment.

4.7. Thermal Conductivity

The Table 4.6 shows the Thermal Conductivity Coefficient of both untreated and treated Jute/Cotton union fabrics.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>40/60 Jute/Cotton (W/mK)</th>
<th>50/50 Jute/Cotton (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>Treated</td>
</tr>
<tr>
<td>1</td>
<td>0.0646</td>
<td>0.0750</td>
</tr>
<tr>
<td>2</td>
<td>0.0605</td>
<td>0.0755</td>
</tr>
<tr>
<td>3</td>
<td>0.0640</td>
<td>0.0795</td>
</tr>
<tr>
<td>4</td>
<td>0.0671</td>
<td>0.0720</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.0638</td>
<td>0.0755</td>
</tr>
</tbody>
</table>

The Thermal Conductivity of treated fabric is increased significantly (P>0.05) by 18% only in the case of 40/60 and in 50/50 blend the thermal conductivity value increases by 1%. This increase in the conductivity is because of weight loss in the treated fabric which in turn allows more heat to pass through the fabric. This will increase the water absorbency, because whenever fibres absorb liquid water or vapour, heat will be released [30]. The results obtained in this research indicate that, the enzymatic treatment and silicon-polyurethane finish improves the various properties of union fabric. As an overall the increase in jute percentage reduces the comfort property of the fabric. From Figure 4.5 it can be noted that, the comfort properties of the fabric improved significantly than raw fabric. Further it can also be noted that the improvement in the fabric properties were high in the case of 40/60 Jute/cotton blend than 50/50 jute/cotton blend. Hence this study suggest that the fabric with 40/60 Jute/cotton fabric has high potential in the commercialisation of apparel fabric.
5. Conclusion
The Jute/Cotton union fabrics are given enzyme treatments followed by silicone polyurethane softening finish. The SEM analysis indicates the improved surface softness of the jute fiber compared to the raw fabric. The FTIR results confirmed the presence of softeners on the fibre surface. The experimental results were evident that there is a significant (p < 0.05) improvement in wicking, water absorbency, air and water vapour permeability and thermal conductivity of finished fabric when compared with the raw fabric. This improvement is achieved by the enzymatic processing and finishing of textile with silicon polyurethane finish. This shows a promising result that jute can also be incorporated in our day to day clothing without affecting the comfort properties. However, the scope of this research is identified as increasing the percentage of jute and evaluating their comfort properties and also in the economic point of view.

Acknowledgement
The authors are thankful to N.J. Divya, A. Shanthi and P.Thenmozhi, students of B.Tech Fashion Technology, PSG College of Technology for rendering their support during this study.

References
1. Introduction
The term "Three-Dimensional (3D)" is applied in the sense of having three axes in a system of coordinates. If no yarn system penetrating the depth is present, we are confronted with a simple textile flat "Two Dimensional (2D)" fabric. Simple flat fabrics have very good stiffness and strength in two directions i.e. in warp-way and weft-way, but they have problem in thickness direction. This limitation restricts the use of simple 2D fabrics in the field of space engineering, automotive engineering and sports goods where the fabrics can be incorporated.

The 3D fabrics are defined by different authors differently for example; Greenwood said "3D fabrics are those fabrics which have substantial measurement in three dimensions as compared to the conventional fabrics, which will have measurement in two dimensions only" [1]. According to Khokar, "3D fabric is defined as single-fabric system, in which the constituent yarns of which are supposedly disposed in a three mutually perpendicular plane relationship", this definition does not consider multilayer and some other type of fabrics to be of 3D type. Hearle gives definition of 3D fabrics as "3D fabrics are thick planar sheets or shaped solid forms with multiple layers of yarns, hollow structures and thin 3D shells".

There are mainly three types of manufacturing systems to produce woven 3D woven fabrics. They are 2D weaving, 3D weaving, and non-interlacing "noobing" method. Other methods like knitting, braiding and laminating principles may also form the 3D fabrics. Conventional 2D weaving device employed to produce interlaced 2D fabric comprises two sets of yarns, while for producing interlaced 3D fabric, three sets of yarns are interwoven. 3D woven fabrics are produced widely by using the multiple warps. An extension of ancient technology for forming double and triple cloth, three-dimensional weaving allows the production of fabrics up to 10 cm in thickness. The binder yarn takes path through the thickness and stuffer yarn along the length.

Abstract
3D woven structures provide attractive features for use as composite reinforcements and this evolution has been driven in response to need in the emerging industrial applications i.e. for making preforms for construction, automotive ballistics, marine and other applications. The composites produced from 3D woven fabrics have higher delamination resistance, ballistic damage resistance, impact damage tolerance and dimensional stability as well. These mentioned properties have been a major problem in composites produced with traditional 2D weaving specially used in military aircraft structures. This paper includes the manufacturing techniques of multilayer, orthogonal and angle interlock - 3 Dimensional solid woven fabrics. Instead of being laid layer upon layer to form the thickness, 3D woven structure can produce the thickness dimension during the weaving process. The amount and types of binder yarns such as carbon, glass, kevlar and ceramic fibres in through-thickness can be used to tailor the properties of composites for specific industrial applications. Also, layer sequence can be arranged based on the requirements. Such kind of fabrics can be fabricated on conventional weaving loom by minor modifications. This will be the future technological challenge in this area.

Keywords
3-Dimensional, Angle interlock, Composites, Multilayer, Orthogonal.
One of the attractive features of 3D weaving is the ability to taper the shape in all three directions during the weaving process [2].

3D woven fabrics can be fabricated by modifying the conventional weaving mechanisms. When the manufacturing of 3D woven fabric on conventional weaving system (As shown in Figure 1.1) is concerned, it can be produced by these three principle techniques namely:

- Multilayer principle
- Orthogonal principle
- Angle interlock principle

A detailed analysis of the different structures produced by these principles is to be needed to select the appropriate structure for particular application. The technology is used for the production of only speciality industrial fabrics such as for making preforms for construction, automotive, ballistic, and marine applications like carbon fibre preforms for high-performance powerboats, sports goods and various industrial applications. Preforms made by 3D weaving provide several important advantages in composites fabrication. The most important advantage of this material is observed in manufacturing thick composites, owed to a significantly reduced labour time, when multiple layers of 2D fabric plies are replaced by one or few number of 3D plies to achieve the required thickness in a composite structure. 3D preforms appear to be better than the most conformable 2D fabrics. The flexural, tensile and compressive stiffness and strength are better in laminates made from 3D preforms than those made from comparable 2D woven or even knitted fabrics mainly due to the absence of in-plane crimp of yarns in the materials [2].

The benefits of advanced composites such as increased design flexibility, structural gains, in particular high specific strength and stiffness to weight ratio, and increased fatigue strength have been well documented. Substitution of conventional metallic materials with composites in various aircraft structures for example consist of successive stacking of layers of a fibrous material.

The fibrous material may already be pre-impregnated with a polymeric matrix material and would be processed in an autoclave or consist of dry woven fabric that is subsequently wet-out in a liquid molding process such as resin transfer molding (RTM). These structures can be tailored to have a specific strength and stiffness in any plane that the fibrous reinforcement exists. However, they have been shown to provide insufficient strength out-of-plane because of lack of reinforcement in this direction. As the limitations of conventional 2D laminates from a manufacturing and a mechanical performance perspective described & address the lack of through-the-thickness mechanical performance in the composite laminate, 3D woven performs can be preferred [3,4].

The benefits of 3D weaving have been discussed, for example, in terms of the ability to tailor the mechanical properties via design of the weave architecture in which an almost endless number of permutations are conceivable. Also, diverse and intricate weave architectures can be created to make near-net-shaped preforms, in which labour and production costs can be reduced because of the implementation of automated textile machinery and by reducing the number of component parts and joining operations required in assembly. However, an engineer designing the component, must also consider the design of the actual weave architecture of the material as well. Therefore, it is essential that a predictive model capable of evaluating the geometric and elastic properties such as stiffness of 3D woven composites be formulated.

3D solids refer to those woven architectures that have solid cross-sections either in a broad panel or in a net shaped perform[5]. There are a number of different ways to form 3D solid architectures; each having its own features structurally and mechanically. In this paper, orthogonal and angle interlock methods are discussed in depth.
Some of the advantages of 3D woven fabrics are listed as follows:

- The absence of interlacing between warp and filling yarns allow the fabric to bend and internally shear rather easily, without buckling within the in-plane reinforcement which is not in case of 2D fabrics.
- The presence of Z-direction reinforcement in 3D fabric is an obvious advantage, as dramatic improvement in composite transverse strength and impact damage tolerance is well documented.
- These have shown improved compression after impact strength, reduced delamination area, and increased number of sub-perforation energy blows required to penetrate the panel.
- Composites made from 3D preforms exhibit high fiber content (% by weight). Although somewhat lower percentages can be expected, fiber content is still higher than in composites made from comparable 2D fabrics.

2. Manufacturing of 3D Woven Fabric by Conventional Weaving System

Differing persons tried different ways to achieve 3D fabrics. Many research programmers have developed a substantial array of 3D reinforced weave architectures that can only be produced on specialist machines but these machines are not commercially available[6,7]. However, only selective structures such as the angle interlock architectures have been widely used [8]. An attempt is made by Greenwood [1] to produce 3D fabric based on orthogonal principle in which all the set of yarns are mutually perpendicular to each other. Another improved way to achieve orthogonal principle based 3D fabric is given by Chen. He developed different weave structures based on above principle using conventional looms and CAD/CAM software successfully [9,10,11]. Some different types of methods are developed by Khokar to achieve 3D fabrics.

In response to the demand of 3D textiles structures, different methods have been used to create 3D textile assemblies, including weaving, braiding, warp knitting, and nonwoven. In weaving, two methods are generally used for the making 3D textile structures. The first is based on the creation of weaving machines which include technologies represented by 3Tex and Biteam. Another method is based on the use of conventional weaving technology. The University of Manchester has been working in this area and has created techniques and tools for creating different categories of 3D woven fabrics. The advantage of the later includes the readily availability of manufacturing technology to generate the variety of 3D structures. It has been also claimed that the technology route using the conventional weaving lead to low cost of 3D architectures [5].

Either by developing some new 3D weaving machine or by modifying conventional weaving machine, solid 3D fabrics can be produced by following ways:

2.1 Multilayer Principle

In multilayer principle, there are multiple layers of distinctive woven fabrics. There are primarily two ways to produce multilayer fabrics as follows:

- Joining different layers on weaving machine at the time of picking
- Joining different layers on sewing machine

In the former case, basically the stitching process consists of inserting a needle, carrying the stitch thread, through a stack of fabric layers to form a 3D structure. In standard textile industry, stitching equipment is capable of stitching preforms of glass and carbon fabrics and there are many high performance yarns that can be used as stitching threads. While in the latter case, 3D weaving of multilayer preforms is done on conventional weaving machines equipped with an electronic dobby or jacquard system: this is a well-established textile technology and very cost-effective [5]. As most 3D composites are produced from high performance yarns (carbon, glass, ceramic, etc) standard textile tensioning rollers are unsuitable and tension control on the individual yarns during the weaving is critical in obtaining a consistent preform quality. The cross sectional view of a multilayer composite is as shown on Figure 2.1.

![Figure 2.1: Cross-sectional view of 3D fabric using multilayer principle](image)
hanging small weights on the yarns before entering the lifting device. Jacquard lifting mechanisms tend to be used more frequently as their greater control over individual warp yarns offers more flexibility in the weave patterns produced. The weft insertion is accomplished with standard technology (generally a rapier mechanism) inserting individual wefts between the selected warp layers. Variations in the lifting and weft insertion mechanisms to allow multiple sheds to be formed and thus multiple simultaneous weft insertions have also been developed and would allow a faster preform production rate.

The features of this type 3D architecture are:

- Each fabric layer can be given a different weave to facilitate a "hybrid" property through the thickness of the composite;
- All warp and weft yarns in the 3D solid textile architectures can be crimped to specified extents to suit the property requirements of the composite;
- Required amount of vertical stitching can be arranged between any layers of fabrics in the preform to enhance the through-the-thickness property; and
- Adding straight wadding yarns in any adjacent fabric layer in either warp or weft or both directions can further strengthen the architecture up.

2.2 Orthogonal Principle

3D orthogonal woven fabric is manufactured with a multi-warp yarn system. The main concept of the fabric is to bind straight warp yarns and weft yarns (along 1- and 2-direction) together using binder yarns (along 3-direction). The warp and weft yarns provide high in-plane stiffness and strength, and the binder yarns run through the thickness direction to stabilize the woven structure. 3D orthogonal woven composites have higher inter-laminar fracture toughness and impact damage resistance than laminated composites [5].

The arrangement used to develop different 3D orthogonal structures is shown in Figure 2.2. Some modifications have been done in conventional mechanical dobby loom to develop 3D structures. As shown in the Figure 2.2, two warp beams were used. The lower beam is used for the ground warp, which was arranged in longitudinal direction in different layers. The upper beam is used for the binder warp, which traveled vertically and is used to bind the warp and weft yarns.

As shown in the Figure 2.2, ground warps are divided into different groups and each group of thread is passed through a separate heald frame. One heald frame is used for the binder warp (number of heald frames depends on number of binder yarns). The reed profile is made in such a way that five consecutive ground warp threads are passed through one dent and in the next dent a single binder warp is made to pass. This is shown in the Figure 2.3.

![Figure 2.2: Arrangement to produce 3D orthogonal fabric](image)

![Figure 2.3: Reed profile to produce orthogonal fabric using single binder yarn](image)
holding the binder warp is raised and beating is done. In this way, the binder thread is arranged vertically in the structure and helps to hold the non-interlaced warp and weft layers of the yarn.

After this, the heald frames start going down one by one starting with the 5th heald frame then 4th and so on and the picks are inserted after moving any of the heald frame to down position, finally binder thread moves down and then beating of the fabric takes place. These steps to produce orthogonal based 3D fabrics are shown in Figure 2.4.

Another kind of 3D orthogonal fabric using 7 heald frames (2 for binder warps and 5 for Ground warps with weave repeat of 12 picks) will have lifting plan and cross sectional view as shown in Figure 2.8.

The features of the orthogonal principle based 3D fabrics are:

- All yarns in the three principal directions are laid straight, therefore they are able to take the load directly and most effectively;
- Required amount of vertical yarns can be arranged by the binding weave specification;
- The interlinking depth can be altered easily within the same preform, leading to variable preform thickness;
- Structure can be either isotropic or anisotropic;
- Fiber volume fraction is 45-55%.

2.3 Angle-Interlock Principle

The basic arrangement to produce 3D fabric using angle interlock principle is same as used in orthogonal fabric, means to use two warping beam, which is shown in Figure 2.2. Two series of warping yarns are to produce angle interlock structure:

- Stuffer Warp (Which are straight, can be used to increase fiber volume fraction and in-plane strength.)
- Binder Warp (Which are used to bind several layers of weft (or warp) yarns together)

The lower beam is used for the Stuffer warp, which was arranged in longitudinal direction in different layers. The upper beam is used for the Binder warp, which travels diagonally and is used to bind the warp and weft yarns.

One kind of 3D angle interlock fabric using 7 heald frames (3 for stuffer warps and 4 for binder warps with weave repeat of 8 picks) will have lifting plan and cross sectional view as shown in Figure 2.8.
drawing-in process two sets of heald frame has to be used for stuffer and binder yarn. Total number of heald frame depends on number of stuffer and binder yarns. The reed profile is made in such a way that consecutive stuffer yarns are passed through one dent and in the next dent a binder yarns are made to pass. Group of yarns passed through one dent will depends on number of stuffer yarns, Binder yarn and reed count. Reed profile or denting ordered to produce above angle interlock fabric is shown in the Figure 2.7.

Figure 2.7: Reed profile to produce angle interlock fabric using four binder yarn and three stuffer yarn.

Suppose the heald frames are given numbers 1 to 7 where first 3 heald shaft is for the stuffer yarn and remaining four heald shaft for Binder yarn. To produce 3D fabric, heald frames numbered 1 to 7 are raised accordingly given ordered of particular pick in lifting plan. For example at the time of first pick insertion to raised fourth number heald frame only and then in the next step, first, fourth and fifth heald frames are in up position and second pick is inserted. After completion of first four pick, beating is done. Similar way to insert other four pick - fifth, sixth, seventh and eighth to complete repeat size and again beating is done. In this way, the binder thread is arranged diagonally in the structure and helps to hold the stuffer warp and weft layers of the yarn.

In this way we can produce fabric which have considerable thickness. Angle interlocked fabrics are quite distinctive class of preforms, which have been scantily explored to achieve interlocking of fabric layers during the weaving stage. They provide the advantage of cost effective preform manufacture with control over layer interlocking density based on weave variations apart from imparting higher impact and delamination resistance to the fiber reinforced composites.

Another kind of 3D angle interlock fabric using 8 heald frames (3 for stuffer warps and 5 for binder warps with weave repeat of 4 picks) will have cross sectional view as shown in Figure 2.9.

In this way we can produce fabric which have considerable thickness. Angle interlocked fabrics are quite distinctive class of preforms, which have been scantily explored to achieve interlocking of fabric layers during the weaving stage. They provide the advantage of cost effective preform manufacture with control over layer interlocking density based on weave variations apart from imparting higher impact and delamination resistance to the fiber reinforced composites.

Some of the features of angle interlock 3D fabrics are:

- It is a multilayer fabric used for flat panel reinforcement.
- It is normally woven on a shuttle loom.
- Warp yarns are taken directly from the creel.
- Warp yarns are used to bind several layers of weft yarns together or vice versa.
- Stuffer yarns can be used to increase fiber volume fraction and in plane strength [12].

Figure 2.8: (a) Lifting plan and (b) cross sectional view of Angle Interlock 3D structure using seven heald frames

Figure 2.9: The cross-sectional view of 3D fabric made using angle interlock
3. Conclusion
It is found that 2D fabrics have limited applications for some industrial applications like automotive ballistics, marine, military aircraft structures, and other application where 3D fabrics can fulfill the requirements. Solid 3D fabrics can be successfully developed by three major principles viz. multilayer, orthogonal and angle interlock by modifying the conventional weaving systems. The multilayer principle consists of mainly two methods like joining layers on the sewing machines or joining layers on the conventional weaving system. In the orthogonal principle, the 3D structure can be produced using number of binder yarns while angle interlock principle involves the use of binder as well as stuffer yarn to give third dimension for production of 3D fabric. Varieties of 3D structures can be produced by varying the number of binder and/or stuffer yarns.

References
From reactive dyes to reactive auxiliaries

N. Sekar

Dyestuff Technology Department Institute of Chemical Technology

Almost 100 years after the synthesis of the first artificial dye reactive dyes were made. Before the advent of reactive dyes the coloration of cotton was achieved by direct, vat, azoic, sulphur, solubilised vat, solubilised sulphur, and basic dyes (after mordanting). In all these cases dyes were held onto the fibres by different attractive forces. The possibility of attaching dyes with fibres with a covalent bond has long been attractive to dyestuff chemists because attachment of dye molecules to the fibres by physical adsorption and mechanical retention have the disadvantages of high cost, low wet fastness and elaborate dyeing methods (except direct dyes).

Early attempts to have a covalent bond between the dye and the fibre were to produce dyes on the fibre itself. However, the formation of covalent bond during the process of dyeing first appeared commercially in 1956, after their invention in 1954 by Rattee and Stephens. In a reactive dye the chromophore contains a substituent that is activated and allowed directly to react with the substrate. The chemical bonding between the dye and the fiber implies good wash fastness properties. Since any simple dye molecule can be converted into a reactive dye by attaching a reactive function many simple and smaller dye molecules (which otherwise cannot be used in the coloration of cotton) could be converted into a reactive dye and applied onto cellulosic substrates. Naturally smaller chromophoric units have brighter colors and thus the reactive dyes became the preferred choice for cotton and blended fabrics containing cotton. The then available bright basic dyes could be dyed only after mordanting and they are inferior in terms of light fastness too. Thus reactive dyes emerged as a very convincing class for the coloration of cotton.

The practical requirements were that the unreacted dyes need to be removed, and the dyes need to be totally non-substantive to remove the unfixed dye. From the perspective of a synthetic chemist both the above aspects were achieved by incorporating several solubilising (sulphonic acid) groups into the dye molecule. Reducing the substantivity to zero by putting a large number of sulphonic acid groups demanded enormous amount of electrolyte during exhaustion. The requirement of large amount of water after fixation (to remove the unfixed dye) and the consumption of huge amount of electrolyte were detrimental and the dyes containing more than one reactive function emerged as an environment-friendly alternative. Incorporation of more reactive functions means stretching the structure which leads to some increase in the substantivity. The concepts like bifunctional reactive dyes, low-salt reactive dyes all emerged. All this could be achieved only with a synergistic combination of synthetic organic chemists and physical chemists.

The problem associated with the requirements of alkali during fixation, requirement of electrolyte dur-
ing exhaustion and heavy usage of water during washing could never be compromised in spite of many such developments. A few trials in replacing the mineral alkali with an organic base emerged in the interlocution of reactive dyes containing cationic charges - the neutral fixing reactive dyes - which by default allowed circumventing the anionic charge on cotton surface and thereby reducing the electrolyte requirement. This concept led to another innovative concept of making the cotton surface itself cationic so that thermodynamics and kinetics play a role in transferring the dye from the dye bath into the fibre by an ionic attraction followed by reaction. Thus cutinizing cotton surface became a practical solution to many problems. The specialty chemicals or auxiliary chemicals in this context has become the present day need to have a more viable and environmental friendly reactive dyeing.
Ecological Concerns in Denim Washdown Processes

Sustainable wet processing of textiles is the need of the hour. Denims, one of the most favoured sub spheres of textiles, are no exception. It is therefore our utmost important duty to understand the hazards of the contemporary chemicals used in denim washing and then take efforts to minimize these hazards.

One of the most important process in denim washing is bleaching or indigo fading. Unfortunately this is an inevitable step and hazardous chemicals are used in this process only. Sodium hypochlorite and potassium permanganate are commonly being used for every medium to vintage denim. Potassium permanganate is also being used on 100% sulphur black denim fabric to get unique effects. Hydrogen peroxide is rarely used as bleaching agent when very less colour loss is required or if fabric is topped with sulphur dyes. The bleaching process helps to get Greyer cast & also protects the lycra/spandex, retain elasticity.

Along with indigo many other colourants are also used to give attractive aesthetic appearance.

Various colourants for tinting in denim wet processing Thus the facts mentioned above pains to bring such harsh facts to the notice of consumers by undertaking exhaustive surveys. Therefore, denim washdown processes is an area of tremendous potential for research.

The basic requirement in this case is of a bleach formulation which is equally effective as that of sodium hypochlorite and potassium permanganate and yet an environmentally friendly one. The possible way could be to use a suitable oxygen bleach process to bring about the same chemical reaction. Oxygen bleach utilizes hydrogen peroxide as bleaching agent aided by auxiliaries such as detergents. Nowadays, there is notable research going on to develop detergents with in-built oxygen bleach formulations so that the concerned washdown effects could be brought about at low temperatures and less concentrations.

In conclusion, one can say that denim washdown process sector is one of the most dynamic yet most criticised sector these days. From research point of view this is a challenge worth accepting. It is absolutely mandatory for us not to ignore these facts but to carefully analyse them and earnestly attempt to innovate for green future.

By Chet Ram Meena & Shyam Phadke

<table>
<thead>
<tr>
<th>Dyes</th>
<th>Pigments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Cost Efficient</td>
</tr>
<tr>
<td>Economical</td>
<td></td>
</tr>
<tr>
<td>Reactive</td>
<td>Cost Efficien</td>
</tr>
<tr>
<td>Sulphur</td>
<td></td>
</tr>
<tr>
<td>Economical</td>
<td></td>
</tr>
<tr>
<td>Wide range of shades</td>
<td>Styling (limited to dull</td>
</tr>
<tr>
<td>shades</td>
<td>shades)</td>
</tr>
<tr>
<td>Short Cycles</td>
<td>Short to long Cycle</td>
</tr>
<tr>
<td>Long Cycle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short to long Cycle</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ease of Application</td>
<td>Machine contamination,</td>
</tr>
<tr>
<td>but poor</td>
<td>but hard to obtain</td>
</tr>
<tr>
<td>Water Consumption</td>
<td>consistency, harsh</td>
</tr>
<tr>
<td>High</td>
<td>hand feel</td>
</tr>
<tr>
<td></td>
<td>Smooth Appearance</td>
</tr>
<tr>
<td>Smooth Appearance</td>
<td>Smooth Appearance</td>
</tr>
<tr>
<td>Smooth Appearance</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dyes</th>
<th>Pigments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td></td>
</tr>
<tr>
<td>Economical</td>
<td></td>
</tr>
<tr>
<td>Reactive</td>
<td></td>
</tr>
<tr>
<td>Sulphur</td>
<td></td>
</tr>
<tr>
<td>Economical</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide range of shades</td>
<td></td>
</tr>
<tr>
<td>shades</td>
<td></td>
</tr>
<tr>
<td>Short Cycles</td>
<td></td>
</tr>
<tr>
<td>Long Cycle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ease of Application</td>
<td></td>
</tr>
<tr>
<td>but poor</td>
<td></td>
</tr>
<tr>
<td>Water Consumption</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth Appearance</td>
<td></td>
</tr>
</tbody>
</table>
DIWALI GET TOGETHER
The Textile Association (India) Ahmedabad Unit arranged Diwali get-together function for the family members of the association. Shri T. L. Patel, President of the Association welcomed all the members at the function and wished all Happy & Prosperous New Year. During the function many senior members also exchanged best wishes for NEW YEAR to each other. Mr. A. D. Bhagat, Vice President spoke about the Diwali get-together and requested participation in Annual Get-together function. Mr. V. A. Trivedi, Hon. Secretary proposed the vote of thanks of the function.

2nd ICTA - 2012
2nd ICTA-2012 (International Conference on Textile & Apparel) held on 23rd - 24th Nov, 2012 at Hotel Lake Shore, Gulshan, Dhaka, Bangladesh. The theme of the conference was "Efficient use of Resources in Textiles Production". The Textile Association (India) was one of the Association partners of the conference. As promotional activities of Governing Council members, The Textile Association (India) sent a business delegation to visit the ICTA-2012 at Bangladesh. From TAI-Ahmedabad Unit Shri T. L. Patel, V. A. Trivedi, K. J. Patel, M. G. Shah & P. V. Patel attended the same. About 25 GC members of TAI from all over India joined in the tour. The tour created good impact on strengthening the ties of TAI & Bangladesh Textile Industry.

5th GC Meeting of TAI
Six GC members from The Textile Association (India) Ahmedabad Unit attended Vth GC meeting of The Textile Association (India) held on 29th Nov, 2012 at Hotel Kohinoor Park, Veer Savarkar Marg, Prabhadevi, Mumbai - 400 025. All GC members actively participated during the discussion of meeting as per AGENDA. The meeting was over very peacefully.

Felicitation Function
The Textile Association (India) Ahmedabad Unit organized a felicitation function of newly elected Minister’s & MLA’s Gujarat State during assembly election of Gujarat. Also it felicitated Mr. T. L. Patel, President and Mr. V. A. Trivedi, Hon. Secretary for bringing great honor at the Ahmedabad Unit for three times hat-trick continuously by winning "Best Unit Trophy" at all India level from the Textile Association (India).
Shri Pradipsinh Jadeja, Minister of State Law & Justice, Legislative & Parliamentary Affairs Receiving memento from Shri B. A. Shah

Shri Hasmukh Patel, MLA Gujarat State Receiving memento from Shri H. J. Patel

Shri T. L. Patel, President TAI-A’bad Unit Receiving memento from Shri Rajnikant Patel

Shri Rajnikant Patel, Minister of State Home, Civil & Defence Receiving memento from Shri A. D. Bhagat

Shri Jagdish Panchal, MLA Gujarat State Receiving memento from Shri K. J. Patel

Shri V. A. Trivedi, Hon. Secretary TAI-A’bad Unit Receiving memento from Shri Pradipsinh Jadeja
Mr. D.R. Mehta, National President, TAI

Mr. D.R. Mehta, National President, The Textile Association (India) has welcomed the Union Budget 2013-14 presented by the Finance Minister, Mr. P. Chidambaram presented for creating environment of optimism and growth of the Industry.

He further said that "We are delighted that excise duty on branded apparels along with other progressive measures like restoration of zero excise duty for the cotton & manmade sector at the yarn, fabric and clothing stages and also sanctioning of funds for key textile sectors".

He further mentioned that this budget was needed for the boost the industry.

Mr. A Sakthivel, Chairman, AEPC

The Union Budget 2013-14 presented by finance minister P Chidambaram today, have cheered the textiles and garments industry immensely. The reason: the government has finally agreed to unanimously remove the excise duty on readymade garments imposed two years ago.

As A Sakthivel, Chairman, AEPC opines, "We thank the FM for accepting the demand of the industry to restore 'zero excise duty route' for cotton and manmade sector (spun yarn) at the yarn, fabric and garment stage. We also thank him for accepting the demand of the industry, for which lakhs of workers, entrepreneurs extend their compliments." Sakthivel also appreciated the fact that the ministry shall continue TUFs in 12th Plan with an outlay of Rs 2,400 crores. The creation of apparel parks within SITP and Rs 10 crores allocation will go a long way in increasing exports of value added textile chain.

On behalf of the domestic garments industry, CMAI welcomed the removal of excise duty on branded garments. "The industry, as so correctly described by the FM, is in the throes of a crisis, and this lifeline was desperately needed to bring back some vigor to this beleaguered sector. The reversal to the optional route not only provides zero percent duty to the industry, it will also provide some form of protection to the domestic industry from cheap imports. Moreover, it will encourage foreign retailers setting up shop in India to manufacture in India, rather than import from outside," said Rahul Mehta, President CMAI.

Experts point out this move will revive consumer sentiment as prices will reduce, and minimize the grey market. "It's good for the whole value chain as consumer sentiment will revive when prices come down," opines Aamir Akhtar, CEO, Arvind Lifestyle Fabrics. Agrees Rajiv Dayal, MD, Mafatlal Denim as he says "removal of duty will
lower MRPs of garments and augurs well for the industry." It will provide much needed boost to brands and manufacturers to scale up and move to the organized sector. With the industry going back on a growth path, one of the biggest positive fallout will be increased employment opportunities, especially for unskilled and semiskilled workers, and more specifically for women workers.

Ramesh Poddar, Chairman & MD, Siyaram Silk Mills feels, the Budget has brought a ray of hope for the industry. "We have been demanding this for a long time and finally our appeals have been heard. This move will ultimately benefit the consumer and help the industry grow. We also appreciate the fact that the government has allocated Rs 500 crores for environmental issues in the textile industry. This will help companies be responsible towards the environment and help them reduce their carbon footprint."

Manish Mandana MD, Mandhana Industries says the whole industry is relieved that excise will go. "It's fantastic news. People are thrilled because the excise hit their business. Paperwork became difficult. This is a huge relief for retail and clothing companies. About Rs 500 crore has been allotted for environmental issues in the textile industry. This is good and that's what we need moving forward. Infrastructure will get better with this. About Rs 1,000 crores will be allotted to enhance youth skills. This is also a fantastic move. In India we have so much talent and potential that can help the industry grow this move will help bring in fresh blood in the industry."

Mr. Naresh Mistry, President of ITAMMA

TAMMA concludes a mix trend for Supply Industry in the Central Budget-2013-14

Shri Naresh Mistry, President of ITAMMA wishes to put his observations as below, in regard with the provisions for Textile Engineering Industry, on the Central Budget-2013-14 presented by the Finance Minister, Shri P. Chidambaram, today in the Parliament.

1. A new scheme called the Integrated Processing Development Scheme will be implemented in the 12th Plan to address the environmental concerns of the textile industry.

2. Bringing green revolution to eastern India with an allocation of Rs. 1,000 crore in 2013-14. (In regard with point no's 1 & 2, ITAMMA has already taken initiatives in sustainability & expects that Machine & Accessories manufacturers will invite developments in Energy Conservation & Environment friendly aspects). Zero excise duty at fibre stage in case of cotton might have brought relief to readymade garment industry; however one should not forget that man-made textiles is also important in case of readymade Garments when it calls for frequent changes in design/fashion, & also in case of Green revolution where recycled fibers plays a vital role.

Thus duty of 12% at the fibre stage in case of spun yarn made of man-made fibre, may discourage its applications as mentioned above & further will have a adverse effect on R&D /Innovations in this field.(thus in this case the Govt. decision of encouraging in-house R & D proves to be on adverse side)

3. Technology Upgradation Fund Scheme (TUFS) to continue in 12th Plan with an investment target of `1,51,000 crore.

4. Companies investing `100 crore or more in plant and machinery during the period 1.4.2013 to 31.3.2015 will be entitled to deduct an investment allowance of 15% of the investment.[Decisions of point no's 3 & 4 are welcomed, however Pre-owned machines should have been exempted from the eligibility under the TUF scheme for textile industry as it affects the local TEI development adversely. Since used machinery is very cheap, there is no need for concessional financing to improve its feasibility or else India will be a junk of second-hand machines (ITAMMA has already warned in its various representations to the respective authorities) - specific notification is not made]

5. Ministry of Corporate Affairs to notify that funds provided to technology incubators located within academic Institutions and approved by the Ministry of Science and Technology or Ministry of MSME will qualify as CSR expenditure.

6. Rs. 200 crore to be set apart
to fund organizations that will scale up S&T innovations and make these products available to the people.

7. A grant of ` 100 crore each made to 4 institution of excellence.

8. Proposal to increase the rate of tax on payments by way of royalty and fees for technical services to non-residents from 10 percent to 25 percent. [the steps taken as per point no’s 5-8, clearly indicate that the Govt. wants to encourage & support in-house R&D; however we should not forget that we are still far behind in the infrastructure requirement for R&D, when compared with the International players in the Manufacturing of Textile Machines; & so it would have been wise decision in promoting the transfer/acquisition of new Technologies/innovations & machinery, and R & D as well as joint ventures with leading textile machinery manufacturers from abroad] (Applied R&D in other words).

Also there is a need to see that institutions of excellence apart from working on the developments in Fiber, Yarn & Fabric,& special finishes, should also give importance to the developments of Machines & Assemblies manufacturing the textiles as mentioned above. At the same time some provision of Funds for the Development of Common Facility Centre (CFC) for various Clusters of Textile Engineering Industry, would have helped in the development of Machines & indigenization of Spares, thus further helping in bringing down the imports & providing the state-of-the-art services & products at National level]

ITAMMA- also recommended waiving off the Custom Duty on the Machines which are brought to India for R & D purpose & the same are taken back to their respective Countries after the appropriate Research/Trials. Please note that we should encourage such New Technology Machines coming to India in order to upgrade the knowledge not only of our Students & Technicians but also, to create an appropriate platform to our emerging Entrepreneurs. Presently the duty structure depends on the duration for which these machines are kept in India.

9. Decisions taken for the benefits for Micro, Small and Medium Enterprises are welcomed including a provision of sum of Rs. 2,200 crore during the 12th Plan period to set up 15 additional Tool Rooms and Technology Development Centres with World Bank assistance.

10. The decision of setting up 1000 crore for this scheme and targeting of skilling 50 million people in the 12th Plan period, including 9 million in 2013-14 & further motivating youth to voluntarily join skill development programmes, through National Skill Development Corporation; is most welcomed by ITAMMA.

11. No change in the normal rates of 12 % for excise duty and service tax has disappointed; but at the same time reduction of customs duty from 7.5% to 5% for Textile Machinery has shown some scope of improvement in investments in this area.
INDIA is a major player in the textile industry and more and more in the technical textiles. Growth opportunities are considerable if these industries meet the requirements of their domestic markets for higher quality products and stand up the worldwide competition to take advantage of the globalization of the markets. The Indian authorities fully recognize these sectors and through the Technology Upgradation Fund Scheme (TUFS), want to promote their growth and take part in the financing.

As for the French textile machinery manufacturers, for already a long time they have considered India as a lead market. Very strong ties with industrialists in India already exist and are considered as long time partnerships.

Thanks to local representatives, the regular organization of seminars in the main Indian textile areas and the participation at many shows, the French machinery manufacturers can offer the service of local partners. After the 2007 and 2010 seminars in next March 2013, they are offering the textile and technical textile industrialists the opportunity to meet once more.

In Delhi, they are expecting industrialists from Northern India (Delhi itself, Panipat, Ludhiana, Amritsar etc.).

In Surat, industrialists from all over Gujarat, (Ahmedabad, Silvassa, Vapi, Baroda, Vadodara etc.) which is considered a key region for the textile industries future growth, a region where textile is a reliant industry from the production of the fibre to fabric and garment as well as certain areas of Maharashtra especially Mumbai.

What can French technology and service bring?

France is the 6th largest exporter of textile machinery with annual exports of nearly 1.2 Billion USD. The French companies which will be represented are particularly strong in long fibre spinning, yarn preparation and treatment, modern weaving, dyeing and finishing (fabrics and knits), air conditioning of textile plants, recycling of textile wastes and products, these for apparel textiles, home textiles (including carpet industry), Technical textiles for such applications as the automobile, Personal protection, hygiene, agriculture, medical textiles, composites etc.).

The machines are technologically state of the art, the services include quick assistance, spare parts availability, special design, consulting services in such sectors as safety rules and energy savings.

These seminars are free of charge but prior registration is required.

For more information & registration, contact
Ms Brinder Rault
Trade Advisor
Lifestyle, Consumer Goodes and Healthcare Department
French Trade Commission, Embassy of France in India
2/50E, Shantipath, Chanakyapuri, New Delhi - 110 021
Tel. : +91 11-43196324, Fax : +91 11-43196309
E-mail : brinder.rault@ubifrance.fr, info@ucmtf.com
Website : www.ubifrance.com
DKTE International Alumni Meet 2012 during India ITME 2012, Mumbai

The Textile & Engineering Institute enjoys a unique and prominent place amongst the institutions that are engaged in education, training, research and consultancy in various disciplines of engineering in India. The genesis and growth of the institute was a sequel to the intense desire and the support of the powerful co-operative sector. Keeping in view the fabric of social responsibility, Mr. K. B. Awade, former Member of Parliament, founded D.K.T.E. Society's Textile & Engineering Institute at Ichalkaranji in 1982.

International Alumni Meet was organized on Tuesday 4th December 2012, during India ITME 2012 at ITME square, Mumbai. An overwhelming response was received for the Meet. The occasion was graced by more than 850 Alumni ranging across various batches from various parts of the country and also from outside the country as well, mainly from USA, Germany, China, Indonesia, Turkey, Bangladesh and Iran. Hundreds of old students of this three decade old Institute, many working on high position in the industry, besides dignitaries, took part in the event.

Chief guests of the alumni meet threw the light on various factors of the industry and shared their vast experience. They also expressed their desire to extend all help for the betterment of DKTE alumni association.

Prof. (Dr.) U. J. Patil, HOD Textile, proposed vote of thanks.

OBITUARY

Mr. H.P. Gupta

Mr. H.P. Gupta, Trustee of the Textile Association (India) - Delhi Chapter, passed away on October 29th, 2012. He is survived by two daughters and their families. Managing Committee of TA(I), Delhi paid tributes to Mr. H.P. Gupta in its meeting held on November 10th, 2012. Mr. H.P. Gupta did his textiles education from TIT, Bhiwani in the year 1956. He was a Gold medal recipient from Pt. Jawahar Lal Nehru, then Prime Minister of India. He had worked with major industrial groups of the country and had travelled widely to USA, Canada, Europe, Russia and China. TA(I) Delhi has also benefited a lot under his dynamic leadership. His invaluable guidance was very useful for organising various events. He was a role model and would always be remembered for his greatness. May God, Almighty grant peace to the departed soul and bestow strength to bereaved family to bear the loss.

On behalf of The Textile Association (India), pray to the Almighty to bestow peace to the departed soul.
"When Vidarbha will wake up???

Government of Maharashtra has organized a two day Investor’s meet – Advantage Vidarbha 2013 to showcase the opportunities available in Vidarbha region during February 25-26, 2013 at Hotel Centre Point, Nagpur.

Federation of Indian Chamber of Commerce & Industry (FICCI) and Vidarbha Industry Association (VIA) supported to this event.

In the two-day conference "Advantage Vidarbha", various pacts worth Rs. 18,461 for various sectors like textiles, food, cement, steel etc. were announced and the memorandum of understanding (MoU) were signed in presence of Maharashtra Chief Minister Mr. Pithivraj Chavan, Industrial Minister, Mr. Narayan Rane, Union Minister for Heavy Industries, Mr. Praful Patel and others.

Mr. Avinash Mayekar, MD & CEO, Suvin Advisors Pvt. Ltd started the technical session by presenting "Weaving Vidarbha's economy." Then as a moderator, Mr. Mayekar started the panel discussion on "Opportunities in Textile Industries: Weaving Vidarbha's Economy" to deliberate on various opportunities available to textile sector in Vidarbha region and how textile industry should strengthen its presence in the region for overall betterment of the economy. Mr. Mayekar moderated the panel discussion with panelists involving Mr. Mohd. Arif (Naseem) Khan, Minister for Textile, Government of Maharashtra, Mr. Sunil Porwal, Principal Secretary-Textile, Government of Maharashtra, Mr. Manoj Soumik, Principal Secretary-Textile, Government of Maharashtra, Mr. Dilip Jiwrajka, Managing Director, Alok Industries Ltd., Mr. K. K. Agarwal, Chairman, Alps Industries Ltd., Mr. Suresh Kotak, Chairman, Kotak Commodities, Mr. S. K. Gupta, Group CMD, Raymond UCO Denim Pvt. Ltd., Mr. Sandeep Gupta, MD, Shyam Indofab Pvt. Ltd. and Mr. Prashant Kumar Mohota, Managing Director, Gimatex Industries Pvt. Ltd.

The most important discussion by the panel was why Vidarbha has still not responded to Maharashtra Government's Textile policy. In spite of having the best raw material available (both cotton & MMF), investor friendly government schemes, logistical advantage and good connectivity by rail, road, air and industrial peace, there are still not sufficient investments happening in textile sector in Vidarbha region.

The discussion also revealed a valuable insight that even though cotton is abundantly available in Vidarbha region, only 30% is processed in Vidarbha region. Mr. Kotak shared his views on the same expressing that the cotton produced in Vidarbha region is not branded and is not marketed suitably like in Gujarat. He also emphasized the importance of creation of textile specific zones as the only value addition for the cotton is in the spinning industry. Hence for the development of complete supply chain, suitable infrastructure needs to be created in this region. Mr. Mayekar suggested that Maharashtra Govt. should start focusing on branding of cotton.

Coming to Maharashtra from North India, Mr. Sandeep Gupta & Mr. K. K. Agarwal would have their own investments in Vidarbha region by looking in to the potential of the Vidarbha region. Mr. Mohota & Mr. S. K. Gupta, being the existing players, were of the opinion that there should be new investments in this region.

They also appreciated the efforts of the Government in maintaining the infrastructure and handling other issues which has helped them to get a foothold in this region. In addition to this, Mr. Jiwrajka gave his valuable suggestion on development of garmenting industry in Vidarbha region to boost the backward integration for garmenting.

Mr. K. K. Agarwal & Mr. Mayekar were in consensus regarding no efforts being taken for development of technical textiles in this region as most of the existing players are investing only in conventional segments. With availability of good quality raw material (both natural and MMF) in this region, an entrant in technical textiles can think of value addition with good profit margins.

Most of the panelists discussed on the prevailing issues in Maharashtra like higher power tariff in Maharashtra, local taxes like octroi duty, payment of stamp duty etc. Summing up the panel discussion, Mr. Khan announced the de-linking of Maharashtra Textile Policy from the TUFS and giving suitable power subsidy for resolving the power tariff issues in Maharashtra. Mr. Mayekar thanked the panel as well as audience and expressed that he is positive that now the industry would come forward to take the benefits in Vidarbha region in terms of government support, raw material and logistics.
Global Yarn and Fabric Output Rose in Q3/2012

Output of global yarn production rose in the Q3/2012 in comparison to the previous one due to higher output in Asia South and America, while production in Europe and North America was down. Also in comparison to last year's third quarter yarn production rose in all regions apart from North America. Global yarn stocks rose slightly in Q3/2012 in comparison to the previous quarter mainly due to higher stocks in Asia and South America. On an annual basis yarn inventory decreased due to lower stocks in Asia and South America and despite an increase in Europe. Yarn orders in Q3/2012 were down both in Europe and Brazil in comparison to Q2/2012. On an annual basis yarn orders were up in Europe but down in Brazil.

World fabric production increased in Q3/2012 inspite of lower output in Europe due to increased production levels in Asia and South America. Year-on-year global fabric production was down; while it increased in Europe, it decreased both in Asia and South America. Global fabric stocks rose slightly in comparison to Q2/2012 as a consequence of higher inventories in Asia and South America and despite lower ones in Europe and North America. Fabric orders decreased in Q3/2012 both in Europe and Brazil compared to the previous one and also year-on-year. The estimates for global yarn and fabric production in the 4th compared to the 3rd quarter of 2012 are positive in Asia, stable in Europe and negative in South America. The outlook for global yarn and fabric production in Q1/2013 remains stable. Regional-wise Asia is expecting stable production levels, while the outlook in Europe is negative for yarn and stable for fabric production. In South America the outlook for both yarn and fabric production is positive.

In comparison with the previous quarter, world yarn output rose in Q3/2012 by +7.5% as a result of high production in Asia (+8.5%), due to higher output in China (+9.3%), India (+7.6%), and Pakistan (+1.9%). Yarn production in South America increased by +2.6%. Yarn output fell significantly in North America (-10.0%) and to a lesser extent in Europe (-7.3%). Year-on-year global yarn production rose by +12.8% with output up in South America (+13.5%), Asia (+13.5%) and Europe (+10.2%) but down in North America (-17.0%). Compared with the previous quarter global fabric production rose by +3.0% in Q3/2012 as a consequence of higher output in Asia (+4.0%) and South America (+2.7%). In Europe fabric production fell by -6.5%. In comparison to Q3/2011 world fabric production was down by -5.1% with Asia and South America reporting decreases of -6.3% and -2.5%, respectively. In Europe on the other hand output increased by +4.9 % on an annual basis.

Global yarn inventories fell by -3.8% in Q3/2012 compared to the previous both Asia (-4.7%) and South America (-3.4%) recording lower inventories, while stocks remained unchanged in Europe. On an annual basis global yarn stocks dropped by -17.8%, a consequence of lower stocks in Asia (-26.8%), South America (-7.1%) and Europe (-0.9%).

Global fabric stocks were up by +0.5% due to higher inventories in South America (+2.4%), and Asia (+0.5%), while inventories in both Europe and North America decreased by -2.0% and -0.4%, respectively. Year-on-year, global fabric inventories increased by +1.0%. This was due to higher fabric stocks in South America (+7.8%) and despite lower fabric stocks in North America and Asia with reductions of -10.7% and -6.7%, respectively.

Yarn orders in both Europe and Brazil were down in Q3/2012 compared to the previous one by -2.9% and -3.3%, respectively. Year-on-year yarn orders rose in Europe by +5.3% but fell in Brazil by -3.6%.

In Brazil and Europe fabric orders in the Q3/2012 decreased by -7.2% and -2.2%, respectively, on an annual basis fabric orders fell with Europe recordign a drop of -6.9% and Brazil of -3.7%.

Textsmile

A perfect son
A: I have the perfect son.
B: Does he smoke?
A: No, he doesn't.
B: Does he drink whiskey?
A: No, he doesn't.
B: Does he ever come home late?
A: No, he doesn't.
B: I guess you really do have the perfect son. How old is he?
A: He will be one year old next Wednesday.
Volkmann will show its energy expertise at Domotex 2013

Domotex, the world’s most important trade fair for floor coverings, will again attract industry professionals to Hanover/Germany from 12-15 January 2013. Volkmann’s trade fair team will be welcoming visitors at the Oerlikon Saurer booth A25 in hall 5. The Volkmann product line will be providing information on its latest technological developments, which are also setting standards in the energy sector.

The Volkmann product line, located in Krefeld/Germany, belongs to Oerlikon Saurer and is the global market leader of twisting and cabling machines for the production of carpet yarns. Sophisticated know-how, innovative strength and market proximity are the traditional strengths of the Volkmann product line.

Now even more economically efficient - only one work process for carpet cabling and heat setting

With Heat-SET, the integration of heat setting in the classical cabling process, the Volkmann product line sets another milestone in carpet yarn manufacturing. For the first time, it is possible to combine the process steps of cabling, heat setting and winding in a single step. Volkmann Heat-SET now combines both finishing steps in one procedure with only one rewinding process. This has clear economic advantages; it reduces the production time considerably, increases flexibility and also produces a high-quality, classic cabled BCF yarn.

The e-save spindles are used in the new Volkmann carpet cabling machines, they can also be installed in existing equipment as a retrofit package. With the expanded e-save spindle family and an energy-saving potential of up to 40%, the Volkmann product line is setting new standards in the market.

Depending on the yarn count range and supply package diameter, the conditions can be optimised with the e-save spindles. This greatly reduces the consumption of energy and simultaneously decreases the yarn strain. Depending on the quality of yarn, higher spindle speeds can be reached, thus increasing the production.

Become up-to-date in quality and economic efficiency with the retrofit packages Many of the technological innovations are also available in retrofit packages as ideal additions to existing equipment. Our customer support is happy to be able to offer appealing, economically efficient retrofit solutions for older generations of machines. A range of pioneering technological components have been developed for this purpose.

This include

◆ Retractable Hi-Lo-creels improve usability
◆ Newly developed yarn tensioning systems promote quality and economic efficiency
◆ E-save spindles provide a better energy balance of up to 40%

Through its excellent ergonomic characteristics, the efficient pneumatic retractable Hi-Lo-creel provides the operator with significantly improved usability. With the newly developed pneumatically central, per machine side adjustable roller yarn tensioner, and the individual yarn tensioners such as the crocodile and hysteresis tensioners for the creel yarn, an increase in economic efficiency and quality can be achieved. The newly developed ball yarn tensioner for the two-for-one twisting machine or the up-twisting of BCF single and plied yarns sets another milestone. The ball yarn tensioner covers the entire yarn tension range. Switching to another capsule, as with the conventional capsule tensioners, is no longer necessary. The tension is easily adjustable in 24 steps and the pneumatic threading is always assured - without additional handling.

With the Volkmann product line and its experienced team staff, our customers always have a strong, innovative and reliable partner at their side, ready to answer any questions concerning twisting.

For further information please contact:
Werner Senti
Marketing
Oerlikon Saurer
Tel: +41 71 44 75 18 8
Fax: +41 71 47 75 42 8
werner.senti@oerlikon.com

Markus Beckmann
Marketing Oerlikon Saurer
Volkmann Product Line
Tel: +49 2151 717 309
Fax: +49 2151 717 717 474
markus.beckmann@oerlikon.com

326

January - February 2013
The Textile Association (India) Delhi Chapter is organizing "National Textile Seminar - 2013" on 12th April, 2013 at PHD House, August Kranti Marg, New Delhi - 110016

The Textile Association (India) is the leading and the largest national body of textile professionals in India, established in the year 1939, and has been serving the Indian textile industry for over 7 decades. Currently there are 27 affiliated units at various textile centers in the country, accounting for member strength of over 23,000. The Delhi Unit of The Textile Association (India) was established in 1965 and today it has about 1700 members. It is the third largest TA (I) unit in the country, after Mumbai and Ahmedabad. TA(I), Delhi has been organizing various useful activities like seminars, workshops, industry visits, industry institute interaction and social get-togethers for its members. TA(I), Delhi has been awarded a number of times with the Best Unit Award and many of its members have been honored with Service Gold Medal, Service Memento and Industry Excellence Award. It has organized several successful conferences in the past, including the 1st Asian Textile Conference in the year 1991, the 7th Asian Textile Conference in 2003 and 67th All India Textile Conference recently in 2012. TA(I), Delhi Chapter is now hosting the National Textile Seminar - 2013 on 12th April 2013 in PHD Chamber of Commerce and Industry in the heart of national capital to commemorate Platinum Jubilee Year Celebration of The Textile Association (India). Only a year back, TA(I) Delhi has conducted 67th All India Textile Conference which proved to be a historic event on all criteria on a very high success note. Taking the step forward, TA(I) Delhi has decided to organize NTS 2013 to maintain the enthusiasm created among textile professionals for the betterment of Textile Industry.

Clothing is one of the basic needs of the mankind and textile industry is one of the oldest manufacturing industries in the world. In fact, industrial revolution started with textile industry and this industry has seen lot of developments and innovations since then. Textile industry is a very significant industry for India as well. It generates lot of employment, contributes substantially to the export earnings as well as to the Indian economy. India's total textile and apparel industry size both domestic and exports is projected to grow at a CAGR of 9.5% to reach USD 223 billion by 2021 from USD 89 billion in 2011.

Mr. R.K. Vij, President, The Textile Association (India) Delhi in an exclusive presentation to the magazine told that Indian textile industry is well poised to grow rapidly in this decade for exports as well as domestic market. One of the important characteristic of textile industry is Innovation over the years. Theme of Seminar is "Propelling Growth Through Innovation". The seminar shall focus on 'Innovations' in various sectors of textile industry, through panel discussions and presentations by eminent speakers from India and abroad. It will be a very interactive seminar and will deliver value to the participants. NTS 2013 shall not only cover topics on hi-tech research and innovations in textiles but shall also illuminate the participants with applied innovations and techniques from some of the leading professionals of India.

The Objective of this Seminar is to collect and disseminate state-of-art research and technology in the field of textiles with special emphasis on Nano Technology, Advanced Textile Structures and their applications, Innovative Weaving and Processing Technologies and business opportunities in technical textile sector. This event will provide a sophisticated program on emerging technologies such as 3D Weaving, Multi-Axial Weaving, Profiled Woven Constructions, Plasma Processing and Nano Finishing by renowned national and international speakers from industry academia and research institutions.

NTS 2013 will also cover current topic of "Impact of FDI in Retail on the Textile Industry", driving consumer demand in clothing and technical textiles, commercial issues facing the industry, best management practices and innovations in the textile value chain. The Seminar would have three technical sessions comprising of individual presentations from eminent speakers as well as panel discussions. Mr. R.K.Vij further emphasize that delegates would have an opportu-
nty to interact with global and Indian Textile experts. There will be renowned personalities from different countries, government officials, logistical experts, commercial speakers from the machinery manufacturers, raw material suppliers, processors and brand owners. NTS 2013 would attempt to handle issues critical for growth of textile industry such as increasing fuel prices, currency fluctuations, etc. Fresh initiatives need to be taken to create confidence in investors. Rising production costs, technological changes, confliction at international level and social compliance are to be dealt with fresh ideas. The Seminar will give a platform to share the new ideas between professionals.

For the Sponsors and Advertisers, NTS 2013 is just the right platform to market their offerings to a large group of professionals and decision makers in the textile industry. Branding at this event will leave an everlasting impression in the minds of all business associates. Advertising at this gala industry event would provide desired exposure and mileage.

Delegate Registration: The National Textile Seminar - 2013 is a prestigious and much sought after event which is likely to be attended by delegates coming in from all parts of the country and abroad. You can register as a delegate by paying a nominal registration fee of Rs. 500/- only. Please register yourself by sending a DD/Pay Order/Cheque (at Par) in the name of "The Textile Association (India) - Delhi", payable at Delhi, for Rs. 500/- to: The Textile Association (India) - Delhi 401, Gagan Deep, 12, Rajendra Place, New Delhi - 110008

For any assistance in Delegate Registration, please contact:
Mr. Puneet Chawla, Chairman, Delegate Registration Committee
Mobile: 9958055114, E-mail: puneet.palmexports@gmail.com

Mr. T. N. Sinha, Co-Chairman, Delegate Registration Committee
Mobile: 9988883070, E-mail: tnsinha@yahoo.co.uk

Confirm your participation NOW, as limited Delegates will be registered for this prestigious Seminar

Souvenir: TA(I) Delhi is releasing a Souvenir on this occasion. The Souvenir would contain research papers and vital information on textile industry and would reach scores of individuals, organizations, senior executives and policy makers etc in India and abroad. We request you to take advantage of this opportunity to market your products by releasing the advertisement in the Souvenir. The applicable tariff rates are as below:

<table>
<thead>
<tr>
<th>Advertisement Options</th>
<th>Tariff (INR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Page (Front Inside)</td>
<td>30000</td>
</tr>
<tr>
<td>Cover Page (Back Inside)</td>
<td>30000</td>
</tr>
<tr>
<td>Cover Page (Back Outside)</td>
<td>40000</td>
</tr>
<tr>
<td>1st Opening Page</td>
<td>20000</td>
</tr>
<tr>
<td>Book-Mark (Both Sides)</td>
<td>25000</td>
</tr>
<tr>
<td>Full Page</td>
<td>15000</td>
</tr>
<tr>
<td>Double Spread</td>
<td>30000</td>
</tr>
<tr>
<td>Half Page</td>
<td>10000</td>
</tr>
</tbody>
</table>

Please book your advertisement by sending a DD/Pay Order / Cheque (at Par) in favor of "The Textile Association (India) - Delhi", payable at Delhi along with a high resolution soft copy of advertisement material in *.cdr or *.pdf format to below mentioned address:
The Textile Association (India) - Delhi 401, Gagan Deep, 12, Rajendra Place, New Delhi - 110008

For any assistance in Advertisement Booking, please contact:
Mr. Ritesh Gupta, Chairman, Souvenir Committee
Mobile: 9810311428, E-mail: riteshguptanewdelhi@yahoo.co.in

Mr. Ashish Gupta, Co-Chairman, Souvenir Committee
Mobile: 9971789111, E-mail: ashish.gupta@ocm.in

For more information, please contact:
Seminar Chairman:
Mr. Sudhish Aggarwala (+91-9868967421)
Seminar Secretary:
Mr. D.K. Singh (+91-9711987523)
Hon. Secretary, TA(I) - Delhi:
Mr. H.N. Jain (+91-9871899690)

Texttreasure

Just the fact that some geniuses were laughed at does not imply that all who are laughed at are geniuses. They laughed at Columbus, they laughed at Fulton, they laughed at the Wright brothers. But they also laughed at Bozo the Clown.

-Carl Sagan
"Sportech - Needs, Challenges & Prospects"

Wool Research Association organized the National Seminar on "SPORTECH - NEEDS, CHALLENGES & PROSPECTS", in collaboration with Indian Exhibition Services, New Delhi at 10.00 a.m. on January 29, 2013 at Pragati Maidan, New Delhi along with India International Sporting Goods Show. The seminar was supported by sponsors Australian Wool Innovation, New Delhi, Raymond's Ltd., Premier Colorscan Instruments Pvt. Ltd., Navi Mumbai.

The seminar on Sportech - Needs, Challenges & Prospects aimed to raise the awareness about the importance of various sports items such as sports goods, sports accessories, sportswear and their market value and application in India and also to share the ideas to deepen and broaden the concept of Sportech developments. More than 70 participants from various stakeholders in sports field like, manufacturers, distributors, retailers, importers, exporters, Textile Ministry, textile industry and academicians from textile institutions from India attended the seminar.

The seminar was inaugurated by Shri. Sujit Gulati, Joint Secretary, Ministry of Textiles, Govt. of India. In his speech, he described the prevailing scenario of Technical textile industry, also elaborated the needs for the advancement in the field of sport textiles. Shri. S. L. Pokharna, Senior Vice President, WRA, Thane, highlighted on the significance of emerging technology, which will break the barrier of conventional textiles to user into a new horizon of Value Added High-Tech arena.

Shri. M K Bardhan, Director, Wool Research Association, Thane, addressed delegates briefly about Centre of Excellence for Sportech. During the inaugural, they released the seminar 'Book of Papers' & CD.

The first technical session started with Dr. Mrinal Choudhari, (Deputy Director, WRA, Thane), informing the participants about the Sportech, their Need, Challenges and Prospects. Dr. K. Gurudatt, General Manager (G & T) Reliance Technology Group, Reliance Industries Ltd., Mumbai gave presentation on 'Comfort Demands of Sports Textiles'. His presentation focused on demands from sports textiles, comfort aspects, evaluation techniques for comfort properties, fibres for sports textiles, highlighting the PET and recent trends in sports textiles. Mr. Amir Sheikh, Country Manager- India, Woolmark Services India Pvt. Ltd, New Delhi spoke on 'Merino PerformTM: Wool in Active Sportswear'. He made the participants aware of the commercial and technical advantages of Merino wool in sports wear application. The session concluded with open discussion about the respective topics and followed by Tea.

The second session started with Dr. S. K. Chaudhuri, Chairman, India National Office, The Textile Institute, Manchester. He highlighted the significance of Sportwool, properties and its applications. Prof. Dr. R. Chattopadhyay, Head, Department of Textile Technology, IIT, Delhi focused on designing part of the sportswear and highlighted the various fabrics characteristic and properties required for sportswear. Mr. Dakshesh Desai, Director, Premier Colorscan Instruments Pvt. Ltd., stressed on the need of testing instruments such as moisture management, fabric touch and colour assessment spectrophotometer for performance testing of sports textiles. The session concluded with open discussion about the respective topics and followed by Lunch.

The third session started with Prof. Dr. Mangala Joshi, Department of Textile Technology, IIT Delhi. She presented and talked about high-tech clothing, high comfort multi layer fabrics, and textile based composites in sports goods and specialty finishes required for sports
fabrics. Further the session was followed by speakers from WRA, Thane, Mr. Jayant Udakhe & Mr. Mayur Basuk, scientists presented the topic on Sports Accessories and Indian Sports Goods respectively. The participants discussed the issues and prospects after this session such as commercialization of sports products, market access and improvement in sports composites etc.

The Seminar concluded with vote of thanks by Dr. Mrinal Choudhari, (Deputy Director, WRA, Thane) addressing all the delegates, speakers and the sponsors for their support to this seminar.

25 February, 2013: Indo-French seminar on Textiles & Technical Textiles Machinery

French Technology And Services For
The Indian Textile And Technical Textile Industry

DELHI: Tuesday, March 19, 2013 at Shangri-La Hotel
SURAT: Friday, March 22, 2013 at The Gateway Hotel

The French Trade Commission-Ubifrance and UCMTF (French Textile Machinery Manufacturers’ Association) are pleased to announce the 3rd edition of the Indo-French Textiles & Technical Textiles Machinery Seminar. The event will be organized, under the patronage of the office of the Textile Commissioner-Ministry of Textiles & the Embassy of France in India, in collaboration with the esteemed professional organizations like CII, TAI, FAITMA, TEXPROCIL, ITTA, TPA, SGCCI, SASCMA, SRTEPC and ATIRA. Technopak will be the knowledge partner for this event.

France is the 6th largest exporter of textile machinery with annual exports of nearly 1.2 Billion USD. The French textile machinery manufacturers, thanks to local representatives, share already strong ties with industrialists in India. After the 2007 and 2010 seminars, 9 French Textile Machinery companies will share their technology with the Indian industrialists from the textile and technical textile sectors at the full day seminar on Tuesday 19th March 2013 at New Delhi and on Friday 22nd March 2013 at Surat.

The participating French companies are particularly strong in long fiber spinning, yarn preparation and treatment, modern weaving, dyeing and finishing (fabrics and knits), air conditioning of textile plants, recycling of textile wastes and products; these for apparel textiles, home textiles (including carpet industry), Technical textiles for such applications as the automobile, Personal protection, hygiene, agriculture, medical textiles, composites ...). The machines are state of the art technologically; the services include quick assistance, spare parts availability, special design, consulting services in such sectors as safety rules and energy savings.

The presentation of the French participants LAROCHE, N. SCHLUMBERGER, STÄUBLI, AESA Air Engineering, VERDOL, SUPERBA, DOLLFUS&MULLER, CALLEBAUT de BLICQUY and ROUSSELET, will be focused on:

◆ Sustainable solutions for textile waste
◆ the process of any type of long staple fibre application
◆ Trend-setting technology for the weaving industry
◆ Air Conditioning - Humidification and Waste Handling Systems for Textile Industries - Quality air with time and energy saving solutions
◆ Technical Yarns processing, Multiple breakthroughs in Industrial Yarns, Tire Cord, Carpet Yarns & Glass Yarns twisting & cabling machinery
◆ Leading Technology of Heat Setting Line for Carpet Yarns
◆ How to improve the feeling, the shrinkage of the knitted and woven Fabrics? How to improve the printing Process?
◆ Dyeing & Finishing: when Ecology relates to cost savings - Very high density Dyeing.

These presentations will be followed by B2B meetings in the afternoon.

The seminar is free of charge but a prior registration is required. For registration, please send your full contact details at Mrs Brinder RAULT, Trade Advisor, French Trade Commission-Ubifrance. brinder.rault@ubifrance.fr
BTRA conducted a one-day technical workshop on ‘ASTM Test Methods for Geosynthetics’ jointly with ASTM International, USA at BTRA premises on 22nd January, 2013.

Mr. Sam Allen, Vice-president, TRI / Environmental, Inc., USA presented a paper on ‘GRI-GM13 Specifications along with various test requirements’ after a brief introduction on ASTM International and various applications in geosynthetics. He also presented another paper on ‘Reinforcement Applications using Geogrid and Geotextile growth along with Erosion Control Applications’.

Mr. V.K. Patil from BTRA presented a paper on ‘Our Experience in Testing of Geosynthetics’. He shared the experience with testing of products and problems encountered in testing. He also made various suggestions in test methods that are necessary based on experience and feedback from customers.

Around 40 participants attended the workshop and took active interest in discussions. The workshop was well appreciated by participants and thanked BTRA for organising such an event.
The 11th Convocation Ceremony for the academic year 2011-12 was held on Saturday, the 9th February 2013 at NITRA, Ghaziabad. Noted industrialists Sh. Sh. R. L. Nolkha, Chairman, Sh. R. K. Jain, Vice Chairman, and Dr. R. C. Jain, Past Chairman, NITRA graced the occasion. 143 students from 11 programs were awarded certificates and medals in this year’s convocation.

At the Convocation Ceremony (L-R): Dr. J. V. Rao, Director General, Sh. R. K. Jain, Vice Chairman, Sh. R. L. Nolkha, Chairman, and Dr. R. C. Jain, Past Chairman, NITRA, Dr. M. S. Raizada, Director, NITRA Technical Campus & Sh. Abhijit Pal, Officiating Director, NITRA.

After welcome by Sh. Abhijit Pal, Officiating Director, NITRA, Director General, NITRA Dr. J. V. Rao mentioned that NITRA had set benchmarking standard in professional training and offering industry oriented programs on regular and DLP basis, covering areas such as textile/garment manufacturing, textile/garment designing, merchandising, quality assurance, garment finishing and sewing machine operation & maintenance. He informed that more than 100 renowned apparel and textiles exports companies had recruited NITRA alumnus in the past ten years. Dr. Rao mentioned that under ISDS launched by MoT in July 2010, NITRA is conducting 98 training programs for textiles and technical textiles sector and would train 16,600 people in five years. He spoke about the "Centre of Excellence" set up at NITRA for carrying out R&D and training in protective textiles and also apprised the audience about NITRA’s other R&D and consultancy services.

Sh. R. L. Nolkha, in his convocation address, opined that the textile ministry and the textile industry had always been encouraging institutes like NITRA for initiating skill development activities both at shop-floor and supervisory levels. He mentioned that NITRA had invested a substantial amount for up-grading its physical and academic facilities such as setting up exclusive training and academic wing NITRA Technical Campus and modernizing other infrastructure. NITRA is providing huge benefit to the Indian Textiles & Clothing industry, continued the Chairman, by developing skilled and well-trained supply line to meet out their manpower needs. Sh. Nolkha awarded certificates and medals to the pass-out students.

A pass-out receiving certificate from Sh. R. L. Nolkha, Chairman, NITRA.

After the 11th Convocation, prizes were distributed to 43 students, winners in various competitions held in Tana Bana 2013 - The Campus Fungama, the first intra-college fest of NTC, the new academic wing of NITRA. Presently NTC is offering MTU affiliated and AICTE approved B. Tech in Textile Technology, and Computer Science & Engineering, and PGDM in Fashion Retail Management.

A section of the audience present in NITRA’s 11th Convocation Ceremony at NITRA.

Sh. R. K. Jain and Dr. R. C. Jain, along with the Chairman, greeted the students and distributed prizes to winners in various competitions while Dr. M. S. Raizada, Director, NTC, proposed the vote of thanks.

Always forgive your enemies; nothing annoys them so much.

-Oscar Wilde
On January 20, 2013, the grand opening of the 8th Annual Meeting of China Textile Round Table Forum was held by China Textile Economy Research Center and the Press Center of China National Textile and Apparel Council, with China National Textile and Apparel Council being the main sponsor, and Oerlikon Textile Group, Beijing Textile Holding Group Co. Ltd., and Beijing Topnew Group being the co-sponsors. The meeting subject of this year was "Surmount the difficulties and seek for future development".

The 8th Annual Meeting of China Textile Round Table Forum

Wang Tiankai, Member of the National Committee of Chinese People's Political Consultative Conference and President of the China National Textile and Apparel Council, Sun Huaibin, Deputy Secretary-General of the China National Textile and Apparel Council, Yao Jingyuan, Special Researcher of the Counselor's Office of the State Council and former Chief Economist of the National Bureau of Statistics, Zhang Yansheng, Researcher and Director of the Foreign Economic Research Institute of the National Development and Reform Commission, Fan Jianping, Researcher and Chief Economist of the National Information Center, Gao Fang, Vice President and Secretary-General of China Cotton Association, Zhu Beina, President of the China Cotton Textile Association, Yu Xiuling, Director of the Clean Production Center of the Ministry of National Environmental Protection, Wen Zongguo, Professor and Doctoral Supervisor of the School of Environmental of Tsinghua University, and representatives from other domestic and foreign enterprises have attended the forum.

Stefan Kroß, President of the Chemical Fiber Division of Oerlikon Textile, gave a speech about "How to Realize Sustainable Development of China's Textile Industry."

In 2012, China was faced with the most severe situations in recent years: shrinking international market, grim exporting situation, slow growth of domestic needs, rising cost of business operation, and the great pressure that textile enterprises were faced with in industrial transformation and upgrade. This forum, with the subject "Surmount the difficulties and seek for future development", is aimed to explore and discuss the options that China's textile industry has to survive through this new circumstance.

The forum was presided by Sun Huaibin. As usual, the forum was divided into three sections: a brief opening, three keynote reports, and three interactive dialogues on specific topics.

Wang Tiankai gave a brief speech on behalf of the authorities of the sponsor group. He firstly thanked all participants for their presence at the forum, and then gave positive affirmation of the achievements that China Textile Round Table Forum has made during the past eight years. Wang believes that the Textile Industry has entered into a new historical stage of development; He said: "We need to accelerate the pace to make necessary adjustments, transformation and upgrading."

Gao Yong, Vice President and Secretary-General of China National Textile and Apparel Council, talked about the analysis and countermeasures of the economic situation of textile industry in 2013.

Yao Jingyuan talked about the Macroeconomic Situation and Relevant Policy of 2013. By comparing the statistics of the energy industry of coal, electricity, oil, etc. in 2012 with that of the previous years, Yao presented to the audience a comprehensive macroeconomic situation, and analyzed from the perspectives of exportation, investment, consumption, etc. the main reasons that lead to the down-
turn of China's economy. Yao believed that the economic situation of this year is more favorable than that of last year. He said according to the requirements of the Central Economic Work Conference, we should make use of the driving forces of both investment and consumption, investment more into the livelihood areas, and support the development of the real economy industries like the textile industry, maintaining the economy growth at a moderate speed and at the same time committed to the reform.

Gao Yong, Vice President and Secretary-General of China National Textile and Apparel Council, talked about the analysis and countermeasures of the economic situation of textile industry in 2013. Gao briefly reviewed the overall situation of the textile industry in 2012 and analyzed and evaluated the industrial economic situation accordingly. He pointed out that in the past year of 2012, although the growth rate of the textile industry slowed down, it still made benefit on the whole, and the exportation realized a slight increase. Gao predicated that the industrial trend of 2013 is going to be steady on the whole, with low growth at first and then followed by increases later.

He said: "Due to the facts that the cost of production factors is comparatively high in China, there is a great gap between the price of the domestic cotton and that of the foreign cotton, our country's international competitiveness declines, etc., the exportation will still encounter with difficult situations; while with the growth of domestic needs and signs of recovery on the international market, we can expect the exportation to increase in the second half of 2013." At last, Gao emphasizes that China must adjust the industrial structure according to the requirements of the Twelfth Five Year Plan and its specifications on the Textile Industry to adapt to the changes on the overseas market.

Stefan Kroß, President of the Chemical Fiber Division of Oerlikon Textile, on behalf of the entire Oerlikon Textile Group, gave a speech about "How to Realize Sustainable Development of China's Textile Industry." He pointed out that the production capacity of China in manmade fiber production now takes up 60% of the world chemical fiber production capacity, while it is still faced with the challenges of rising costs of raw materials and labors. China's chemical fiber shall development in the direction of high quality and efficiency in the future, and trends like this also provide basis and opportunity for Oerlikon Textile Group. The Manmade Fibers Division of Oerlikon Textile emphasizes on developing green products (e-save) and technologies featuring high efficiency, low energy consumption and low emission according to the needs of customers, especially the Chinese customers. Early in the year of 2007, the Manmade Fibers Division of Oerlikon Textile has developed the newest WINGS POY winding machine, of which the sale amount has exceeded more ten thousand by now. Compared with the previous system, the new winding machine has a better performance, takes up less space, produces less silk waste, and consumes less energy with even lower labor cost. He said: "It is because Oerlikon continuously adjusts its strategies according to situations of China's textile industry with active innovation spirit. This is why Oerlikon can realize sustainable development on China's market, the largest market in the world."

What's more, Kroß also mentioned that as Oerlikon Group is making material adjustment to strip the Natural Fiber and Components Division. Within the three interactive dialogues the experts talked about the following three topics:

Topic One : The Situations on the Domestic and International Markets and the Countermeasures.
Topic Two : Cotton Market and Policy.
Topic Three : Environment and Ecologic Construction.

In each topic discussion, the authorities and experts discussed with each other on the hot topics of changes of situations on the domestic and international markets and the countermeasures, the domestic sales situation, situation of the raw materials, the need to transform the textile industry, new turning points appearing in the textile industry, strategies for textile enterprises to cope with the changes, environment and ecologic construction, etc. opening the thinking space full of challenges for the development of textile industry in the new year.

It was an open discussion and for the first time the experts were asking the government and the authorities to focus on energy topics in the textile industry.

For more information, please contact:
André Wissenberg
Vice President
Marketing and Corporate Communications
Oerlikon Textile GmbH & Co. KG
Head of Marketing & Corporate Communications
T +49 2191 67 2331
F +49 2191 28447 2331
andre.wissenberg@oerlikon.com?
ITAMMA registered more than 20% of member-exhibitors during 'India-ITME 2012' exhibition held from 2-7 December, 2012 at Bombay Convention & Exhibition Centre, Goregoan, Mumbai.

The visitors at ITAMMA stall were about 498, out of which 444 were from User Industry and 54 were from Supply Industry, where 7 new members were also registered.

B 2 B meeting on 2nd December, 2012 at 3.00p.m.

ITAMMA held a business to business meeting where MOU was signed between ITAMMA and ITMF for the transfer of Technologies/ Collaborations/ Tie - ups. Dr. Schindler, Director General of ITMF, Zurich signed on behalf of ITMF and Mr. Naresh A. Mistry, President of ITAMMA signed on behalf of ITAMMA.

Mr. Naresh A. Mistry, further informed that ITAMMA, being an oldest and largest Association in India representing Textile Engineering Industry with its membership nearing 500, has always taken initiatives for the benefit of its members and Textile Engineering Industry as a whole, in the field of knowledge enriching and business growth. To help our members in the adaptation of innovations & new technologies, ITAMMA had signed MOU’s with 15 Textile Research Associations, Institutes & Colleges at National level. And we had further implemented various technological activities viz. Lean Manufacturing Programmes, Design Clinics, Common Facility Centre, etc under under the umbrella of Cluster Development Initiatives at Ahmedabad. ITAMMA had also signed MOU with TEMSAD at International level & expected to sign few more MOU’s with Taiwan, UK Textile & BTM Associations very shortly, after signing this MOU with ITMF, Zurich.

Dr. Schindler, Director General of ITMF, Zurich also assured that ITMF will take positive & sincere efforts to execute the various contents of this MOU for the benefit of the Textile Industries of both the countries.

ITAMMA is expected to sign few more MOU’s with Taiwan, UK Textile & BTM Associations very shortly.

ITAMMA also launched a User Friendly Textile Stores & Directory 2012, along with CD during India ITME 2012.

Mr. Kaizar Mahuwala, Chairman, International Networking, Seminars & Public Relations Sub - Committee introduced International delegates

Shri Naresh Mistry - President, ITAMMA, inaugurated The Buyers Guide " Textile Stores & Directory" to his RHS is Mr. Kaizar Mahuwala, Chairman, International Networking, Seminars & Public Relations Sub - Committee, & Mr Jignesh Shroff, Alternate Chairman-Exhibition Sub-Committee; & to his LHS is Mr. Jugal Kishore, Convener-Export Cell Committee, & Mr. N.D. Mhatre, Dy Director General (Tech)-ITAMMA

Mr. Kaizar Mahuwala, Chairman, International Networking, Seminars & Public Relations Sub - Committee introduced International delegates
During the last 68 years the Association has brought several editions of the Buyers Guide "Textile Stores & Directory" containing information of the Products manufactured & marketed not only by the members but also others engaged in Textile Engineering Industry.

The first edition of the Textile Stores & Directory was published in 1953 and the present edition is 11th in the series, accompanied by a CD format will be published during India ITME 2012 Exhibition.

As the present scenario of textile industry is encouraging investments and involvement of Engineered Textiles and Green Textiles, special emphasize is given to the Indigenous Manufacturers of Machines & Accessories of these products, in the content of this publication.

The contents of the Directory are so structured that they are User Friendly to access. It contains the names & addresses, along with the products of the Manufacturers, Dealers, Traders & Merchants of Machines, Accessories & Allied "ITAMMA" gives an opportunity to its members for participation in 'Poster Display Scheme of ITAMMA at Vibrant Gujarat under ITAMMA Pavilion from 8th - 13th January, 2013 at Ahmedabad'

Vibrant Gujarat had evolved into global event attracting delegates & business visitors from over 100 countries across the globe. This event attracted industrialist & foreign countries, looking at doing business with India providing the best opportunity for networking & accessing new opportunities for Indian companies.

Exports, Investments & collaboration to conquer world market were the focus & target of the participants in Vibrant Textile Pavilion.

"Poster Display Scheme of ITAMMA" specially designed for the ITAMMA members who showcased their strengths, products & services to the world in Vibrant Textile Pavilion, received a good response through 9 ITAMMA members whose details are as below:

1) M/s. Rabatex Industries, Ahmedabad
Manufacturers of Sectional Warping Machines, all types of Creels, Sample Warping / Sizing Machines and Material Handling & Storage Equipments (Beam Trolleys).

2) M/s. Laxmi Shuttleless Looms Pvt. Ltd., Ahmedabad
Manufacturers of Shuttleless Flexible Rapier Looms, Terry Rapier Looms, Jute, Canvas & Technical Textiles Rapier Looms, dealers in Flexible Rapier Looms and Weaving Advisory Services.

3) M/s. Continental Engineering Industries Pvt. Ltd., Ahmedabad
Manufacturers of Heald Frames & its Accessories, Drop Pins, Electrical Contact Bars, Reeds, Temples, Temple Rings, Riderless Healds, Leno Doup Healds, Selvedge Leno Attachments, Precision Sulzer Spares and Indentor of Second-hand Weaving Machines.

4) M/s. Perfect Equipments Pvt. Ltd., Ahmedabad
Manufacturers of Flat End Milling Machines, Flat Clipping Machines pneumatically operated with PLC Control, Flat Tear-off Machines, Automatic Flat Grinding Machines, On Card Flat Grinding Rollers, Traverse Head On Card Flat Grinders pneumatic operated, Roller Mounting Machines,

5) M/s. Siddhi Engineers, Ahmedabad
Manufacturers of Aluminium Precision Drawn Tubes, Ropes, Profiles for Textiles Bobbins Cots and other applications.

6) M/s. Mayur Reeds And Healds Pvt. Ltd., Ahmedabad
Dealers in All Metal Reeds, Droppers, Healds, Heald Frames and other Weaving Accessories.

7) M/s. Gurjar Gravures Pvt. Ltd., Ahmedabad

8) M/s. Rintex Industries, District Surendranagar
Manufacturers of Spinning Cans & Accessories with Castors, Aluminium Trolleys and Baskets.

9) M/s. Krsna Engineering Works, Ahmedabad
Manufacturers of Textile Processing Machinery, Soft Flow Dyeing Machines, Washing Ranges, Knit Tubular Driers / Mercerisers, etc.

ADVERTISEMENT INDEX

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian Textile Conference</td>
<td>A-10</td>
</tr>
<tr>
<td>Aspire Chemicals Pvt. Ltd.</td>
<td>A-9</td>
</tr>
<tr>
<td>Book Publication</td>
<td>A-15</td>
</tr>
<tr>
<td>Bekaert Carding Solutions Pvt. Ltd.</td>
<td>A-3</td>
</tr>
<tr>
<td>CITI Textile Directory</td>
<td>A-14</td>
</tr>
<tr>
<td>InFashion</td>
<td>A-6</td>
</tr>
<tr>
<td>International Conference</td>
<td>A-12</td>
</tr>
<tr>
<td>National Textile Seminar 2013</td>
<td>A-4</td>
</tr>
<tr>
<td>Precision Rubber Ind. Pvt. Ltd.</td>
<td>A-16</td>
</tr>
<tr>
<td>Premier Colorsan Instruments Pvt. Ltd.</td>
<td>A-1</td>
</tr>
<tr>
<td>Reliance Industries Ltd.</td>
<td>Cover-1</td>
</tr>
<tr>
<td>Rieter India Ltd</td>
<td>Cover-3</td>
</tr>
<tr>
<td>SSP Pvt. Ltd.</td>
<td>A-13</td>
</tr>
<tr>
<td>Subscriber Form</td>
<td>A-24</td>
</tr>
<tr>
<td>TAI Website</td>
<td>A-8</td>
</tr>
<tr>
<td>The Indian Card Clothing Co. Ltd.</td>
<td>A-11</td>
</tr>
<tr>
<td>Thymas Electronics Pvt. Ltd.</td>
<td>P-285</td>
</tr>
<tr>
<td>Thymas Electronics Pvt. Ltd.</td>
<td>P-296</td>
</tr>
<tr>
<td>Thymas Electronics Pvt. Ltd.</td>
<td>P-318</td>
</tr>
<tr>
<td>Truetzschler India Pvt Ltd.</td>
<td>Cover-2</td>
</tr>
<tr>
<td>Truetzschler India Pvt Ltd.</td>
<td>A-7</td>
</tr>
<tr>
<td>Unitech Techmech</td>
<td>Cover-4</td>
</tr>
</tbody>
</table>
FX 3000 Hydrostatic Head Tester
HYDROTESTER IV

TEXTEST AG, a Switzerland based manufacturer of testing instruments for technical textiles, is proud to introduce the forth generation Hydrostatic Head Tester, the FX 3000 HYDROTESTER IV. With close to one thousand delivered units of the previous generations, the FX 3000 series has become the standard instrument for water resistance testing worldwide. The new FX 3000-IV is available in three models with different maximum test pressures, ranging from 500 mbar up to 5 bar (50 m water column).

By a pneumatic cylinder, provides a constant and very high clamping force, which prevents lateral leakage of water through the sample.

Another interesting new feature is the completely new user interface (touch-screen) with the different possibilities to evaluate and document the results: The FX 3000 HYDROTESTER IV can be integrated into a network, if desired via Wi-Fi, and the internal memory of the instrument can be accessed, and a comprehensive test report can be generated, from any PC within the network, using the internal local web server of the instrument and any web browser in the PC. Furthermore, all style information, test parameters, and results can be centrally managed from the network.

The FX 3000 HYDROTESTER IV complies to many national and international Standard Test Methods.

RIETER PARTS
Innovative Retrofits for Draw Frames

Many progressive enhancements of the draw frame can be integrated in older machine models with little effort. The non-contact pulse generator B92 EVO facilitates improved measuring accuracy - even with heavy soiling. Thanks to the innovative XR nanocoating the life cycles of the calander disc in the sliver canal are extended. The accuracy of the sliver thickness measurement is thereby improved.

The pulse generator B92 EVO is available for the draw frame types RSB-D 30, RSB-D 30c, RSB-D 35, RSB-D 35c, RSB-D 40 and RSB-D 40c.

Non-Contact Pulse Generator B92 EVO
The magnetic measuring principle of the pulse generator B92 EVO is based on a magnet ring and sensor head. With older draw frame models, an additional shaft is delivered to facilitate this non-contact measuring principle.

The new pulse generator B92 EVO consisting of sensor and magnet ring.

The high shock/vibration resistance and dustproof properties (Protection Class IP67) of the pulse generator B92 EVO allow a faultless application even under extremely dusty environmental conditions with fiber fly. The vibration resistance also ensures a high level of measuring accuracy and functional safety.

A longer life cycle compared to its predecessor is achieved by the new pulse generator B92 EVO through contact-free measuring. Bearings that could wear out no longer exist.
During the development, great value was placed on simple installation and high ease of maintenance. The main drive shaft only needs to be installed and dismantled when assembling the magnet ring; in contrast to the exchange of the old pulse generator B92, where the shaft had to be completely dismantled every time.

The sensor B92 EVO is attached to a separate holder which allows it to be changed without removal of the main drive shaft. With its lower installation height and the integrated plug, it is very easy to install the new pulse generator B92 EVO and to connect it to the existing socket. This results in a quick re-commissioning of the draw frame following a successful retrofit.

Long-lasting Calander Disc XR with Nanocoating

The calander disc XR can be supplied for all Rieter autoleveler draw frames - from the RSB 951 machine generation.

![Long lasting calander discs with XR coating](image)

The calander discs are necessary for transporting the sliver in the sliver canal of the draw frame and are thus subjected to persistent stress resp. a higher level of wear. The calander discs are responsible for part of the quality monitoring of the sliver and for this reason, their surface quality is extremely important.

The XR coating was developed precisely for this application. It exhibits an extraordinary wear resistance which stems from its very high degree of hardness and the nano-structured layer construction.

Due to the special XR process, the roughness of the surface is exactly the same as with an uncoated calander disc. This very smooth, fiber-gentle surface characteristic is retained by the homogeneous layer structure over the entire lifecycle. This assures consistent measurement and quality of the sliver over a significantly longer period of time.
If the Eiffel tower had been built 124 years later, Oerlikon would have assuredly played a significant part in its construction. Because what was riveted, screwed or welded together using iron and steel components back then would today be primarily made of composites - and the Oerlikon Textile, Vacuum and Coating segments today supply a wide range of technology and components for their production. These are the focus of the Oerlikon show appearance at the JEC between 12 and 14 March 2013 in Paris (booth number S 75).

Carbon fibres are used in applications where low weight and extreme stability are prerequisites. Carbon fibre-reinforced plastics are used, to name a few areas, in the aeronautics and aerospace industry, wind power plants, automotive industry, safety technology and in high-quality sports equipment such as racing bicycles, tennis racquets, skis and boats.

Oerlikon Barmag has developed a winder specially for the production of carbon fibres called Win-Trax. The two-yarn winding head combines the economic production of top quality carbon fibres with simultaneously perfect package building and identical running lengths. In addition, the new WinTrax-A 2cop produces packages with a diameter of up to 310 mm. The resulting higher package weights reduce tooling times and therefore significantly reduce outlay during composite production. Due to the identical running lengths of all packages, waste is reduced to nearly zero percent.

Oerlikon presents a wide technology spectrum at the JEC in Paris, France Innovations for the materials of the future

The production of composites frequently requires filaments or tapes with particular properties, such as high tensile strength, low elongation or a high modulus of elasticity. The extrusion systems for producing these high-quality tapes, monofilaments and multi-filaments are another information highlight of Oerlikon Barmag at the JEC.

The exhibits also include the independent metering unit GM Control, newly developed by Oerlikon Barmag. Oerlikon Barmag is responding here to the demands of numerous users for an easy to use plug-and-play version of its proven GM metering pump series. The unit can be controlled directly and can also be retrofitted to existing process control systems.

Whether for casting PUR parts, lamination of composite parts, metering additives in an ongoing extrusion process, application of cold adhesives or for flexible use in production systems with changing requirements - the compact and mobile GM Control unit can support all these tasks with the usual high metering accuracy and with even more ease of use.

The core of the GM Control metering unit - the GM pump - is available for numerous conveying capacities. This means that an appropriate metering unit can be provided for various throughput volumes.

Delicate handling of glass filaments thanks to modern technology

Two further brands in the Oerlikon Textile segment are also presenting their latest products in the glass sector: Oerlikon Saurer and Oerlikon Textile Components. At the Oerlikon joint booth, visitors can learn all about the Volkmann GT (GlassTwister), the trend-setting ring twister used for the production of glass filament yarns. Oerlikon Sauer offers its customers the complete spectrum of innovative solutions and services in the glass sector with its product line Volkmann. The GlassTwister is modular in design and the main components are the creel baskets and ring twisting spindles. Both components are equipped with single motor drives and pneumatic brakes. They are supplemented by the central ring rail drive with servo motor. The complete synchronization of all components and the programmable
ring rail guide enables an optimal package build and thereby a perfect processing of the twist packages in the subsequent processing steps. The ergonomic design enables the operating personnel to carefully feed the machine at a comfortable working height, which ensures a careful handling of the spinning cakes and thereby the quality of the feed material.

The Volkmann GlassTwister is able to twist plied yarn structures, e.g. 3-ply yarns and hybrid yarns, when being equipped with a package creel and godet supply units in place of the creel baskets. Production of single or multi-ply yarns from raw materials in the count range between 10 and 5000 tex. Flexible application areas: e.g. PA, PES, CV, Aramid, PVA, Dyneema, PE/PP as multiple or monofilaments.

Oerlikon Textile Components can look back at over 40 years of experience in the production of components specially developed for the glass fibre industry. At the JEC, this business unit will be presenting innovative aprons from the Accotex® series which are used in glass fibre processing. The glass fibre apron Accotex® 964 FG3 was specially developed for super-fine filaments such as BC (4 μm), C (4.5 μm) or D (5 μm).

Oerlikon Leybold Vacuum provides pumps & systems for various applications. The Sogevac, Trivac & SP pump series have proven themselves over the years in degassing, lamination and resin transfer moulding applications. Based on their experience in these difficult processes, Oerlikon Leybold Vacuum can offer optimised vacuum pumps, ranging from 10 to 300 m³/h, and complete systems. The wide motor range enables worldwide deployment of these pumps. Oil-lubricated pumps (Sogevac or Trivac) or dry-running pumps (SP) can be used according to customer requirements. Thanks to specially selected oils, the Trivac & Sogevac series enable long working intervals without maintenance and with adapted optimal performance features.

Vacuum pumps are essential in the production of composites

In addition to the innovative Oerlikon Textile exhibits, the Oerlikon Group is also presenting new coating solutions from Oerlikon Balzers at their exhibition booth, as well as aspects of the vacuum technology supplied by Oerlikon Leybold.

Oerlikon Balzers is the world’s leading supplier of surface technologies, which significantly improve the performance and durability of precision components as well as tools for the metal and plastics processing industries. These coatings, marketed under the BALINIT® brand name, are extremely thin and exceptionally hard.

They significantly reduce friction and wear. BALINIT® DIAMOND PLUS is the solution for aluminium alloys and composite materials. An especially smooth, nanocrystalline structure facilitates chip flow and prevents the formation of built-up edges. Cutting forces are significantly reduced. Thanks to the excellent surface quality of the workpieces, no reworking is necessary.

For further information:
Burkhard Bondel
Head of Group Communications & IR
Tel. +41 58 360 9602
Fax +41 58 360 9802
pr@oerlikon.com, André Wissenberg
Head of Marketing and Corporate Communications Oerlikon Textile
Tel. +49 2191 67 2331, Fax +49 2161 28 447 2331
andre.wissenberg@oerlikon.com
“An International Conference on Challenges Facing Indian Cotton”

“Whoever says industrial revolution says cotton” - Hobsbawm. In the sixteenth Century cotton turned out to be the most important manufactured goods in the world trade. In the centuries that followed the bulk of cottons that criss-crossed the globe had their origins in the Indian subcontinent, the pre-eminent centre for cotton manufacturing in the world until the nineteenth century Industrial Revolution. Economic Historians observe “In shaping markets and serving fashion, Indian cottons prepared global consumer markets for the modern industrial age”.

Britain’s supremacy after the development of mechanized textile industry tilted the scenario in favour of west. India, China and others took the back seat and the scenario continued till early 90’s. Serious commitment by Indian policy makers, agro scientists, farmers, ginners and the consuming textile industry post MFA brought in radical change in the status of cotton. Brands and organized retail have started adding values for the growing young and fashionable consumers. Keeping aside China, India leads the globe today in terms of highest land availability for cotton cultivation, span of cotton qualities suitable for coarse to the superfine yarn counts and thereby becoming the second largest cotton producer / exporter.

With over 3100 spinning mills, close to 200 composite mills and 175 large weaving operations, the industry is currently operating with 48.5 mn spindles, 782000 Open End Rotors and 66000 shuttle-less weaving machines. Interestingly, a massive decentralized sector covers 2.3 mn power operated shuttle looms on the top of 2.4 mn hand looms. Knitting sector including Hosiery has turned out to be a major growth sector.

Revolution in seeds, farm practices, advanced ginning and never ending developments by the Indian & global spinning machinery sector have been making the entire cotton value chain believe that India can take the global lead in cottons by 2020.

“Back to Glory – An International Cotton Summit”, a premier stage for discussion on challenges & emerging opportunities invites all Indian and International leaders in the field of Cottons.
PROPOSED PROGRAMME

9-10 April 2013, Tuesday
08:45 am – 09:15 am: Registration & Tea/Coffee
09:15 am – 10:30 am: Inaugural Session

• Shri. Narendra Modi, Hon’ble Chief Minister, Gujarat
• Shri Saurabhbhai Patel, Minister, Environment & Petrochemicals, Govt of Gujarat
• Shri Maheswar Sahu IAS, Principal Secretary (Industries & Mines)
• Shri. Sanjay Lalbhai, Chairman – Arvind Ltd., Ahmedabad
• S Hari Shankar, Chairman - TMMA, Mumbai
• Mike McCue, Editor, Cotton International, USA

10:30 am – 11:00 am: Networking High-Tea

11:00 am – 01:15 pm

Session I

* Global Overview of Cotton: Mike McCue, Cotton International, USA
* Developments in Cotton Seeds & Practices in India: Prabhakar Rao (NSL, Hyderabad), Mahyco-Monsanto
* China Cotton – Present & Future: Gao Fang, China Cotton Association
* Round Table Discussion: Cotton Trading in India with special reference to Exports: Shadresh Mehta, Surekha Kotak, Dhiren Sheth, Dr. Peter Wakefield, Cargill, Plexus, Olam

01:15 pm – 02:00 pm: LUNCH

02:00 pm – 04:00 pm

Session II

• Indian Spinning Machinery Sector – Rajnikant Bachkaniwala, Past Chairman – TMMA
• Round Table on Ginning Practices in India: Ginners Association of Gujarat, Punjab, Maharashtra, Andhra Pradesh, Bajaj Steel Industries
• Guideline for Emerging Investors in setting up a Cotton Spinning Unit: An Expert’s View

04:00 pm – 04:15 pm: Tea-Break

04:15 pm – 05:45 pm

Session III

• Indian Cotton in 2020: Mr. I.J. Dhuria (Vardhman), Bharat Desai (Reliance), Deepak Boral (Bangladesh), Mr. Reiderer (Indonesia)
• Cotton & its By-products: CIRCOT

10: April 2013, Wednesday
08:30 am – 09:00 am: High-Tea
09:00 am – 11:30 am

Session IV

• Product Developments and Marketing opportunities in cotton as seen by Cotton INC, USA
• India – Africa Cotton Initiative: Matthias Knappe, ITC – Switzerland
• Organic, RCI, Fair Trade in Cotton Branding & Retailing: Arvind Brands, M&S, Madura Garments, Pantaloons, Shopper Stop
• Round Table on “Whither Cotton Spinning”: Rieter, LMW, Truetzschler, Schlafhorst, Toyota, Murata

11:30 Noon – 12:00 Noon: Tea-Break
12:00 Noon – 01:30 pm: Valedictory Session

* Valedictory Panel on Cotton, Textile Industry & Gujarat Policy - An Interaction with the industry: Arvind, Vardhman, Welspun, Alok, Aarvee, TT and others

January – February 2013
SPONSORSHIP OPPORTUNITIES

<table>
<thead>
<tr>
<th>Type of Sponsor</th>
<th>Amount (INR)</th>
<th>Amount (US Dollar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Sponsor</td>
<td>INR 10 Lakhs</td>
<td>US$ 20,000</td>
</tr>
<tr>
<td>Platinum Sponsor</td>
<td>INR 8 Lakhs</td>
<td>US$ 15,000</td>
</tr>
<tr>
<td>Gold Sponsor</td>
<td>INR 5 Lakhs</td>
<td>US$ 10,000</td>
</tr>
<tr>
<td>Silver Sponsor</td>
<td>INR 2 Lakhs</td>
<td>US$ 5,000</td>
</tr>
<tr>
<td>Bronze Sponsor</td>
<td>INR 1 Lakhs</td>
<td>US$ 2,500</td>
</tr>
<tr>
<td>Docket</td>
<td>INR 5 Lakhs</td>
<td>US$ 10,000</td>
</tr>
<tr>
<td>Lunch (9th OR 10th)</td>
<td>INR 5 Lakhs</td>
<td>US$ 10,000</td>
</tr>
<tr>
<td>Networking HighTea (9th OR 10th)</td>
<td>INR 3 Lakhs</td>
<td>US$ 7,500</td>
</tr>
<tr>
<td>High Tea (9th OR 10th)</td>
<td>INR 2 Lakhs</td>
<td>US$ 5,000</td>
</tr>
</tbody>
</table>

PROMOTION INCLUDES

Logo on Back Drop of Conference. (Hard & Soft Copy Required)
Logo on Main Gate of Conference.
Logo on Brochure & Invitation (Only for Lead Sponsor)
Video Presentation in Food Court. (Only Docket, Lunch & High-Tea Sponsor)
(Matter required in DVD - Two Pcs)
4 Colour Full page advertisement in Souvenir. (Pl. refer Advt. details to provide Advt. Matter)
Complimentary delegates as per the Type of Sponsor.

Advertisement Tariffs in (Souvenir)
(All Advertisements in Multi Colour)

- Front Cover Page (double spread) $60,000/-
- Front Cover Page (inside) $50,000/-
- Front Cover 1st Page $40,000/-
- Book Mark $20,000/-
- Back Cover Page $40,000/-
- Back Inside Page $30,000/-
- Back Cover 1st Page $20,000/-
- Full Page Four Colour $10,000/-

DELEGATE REGISTRATION

- Indian Delegate $3,000
- Association Delegate $1,000
- Student Delegate $500
- Overseas Delegate US$ 75

Registration on First cum First Serve basis, Limited Capacity, Confirm your registration at
FORTHCOMING EVENTS

INDIA

Indo-French seminar or textiles & Technical textiles machinery
French Technology and service for the Indian Textiles and Technical Textile
Date: DELHI: Tuesday, March 19, 2013
SURAT: Friday, March 22, 2013
Contact: French Trade Commission, Embassy of France in India Mrs. Brinder RAULT, Trade Advisor,
Tel: 91 11 4319 6324/6300
E-mail: brinder.rault@ubifrance.fr

InDIGO : Event for denim in South Asia
InDIGO is the one and only denim trade event in South Asia, conceived to cover the entire denim value chain, from fiber to finished products, and provide an unmatched opportunity to all stake holders and segment leaders, from across the globe to show-case their offering to the largest ever gathering to denim professioning to the largest ever gathering of denim professionals...
Date: 19th-20th April, 2013
Venue: Expocentre, Sector 62, NOIDA, India.
Contact: Nitin Khuswah, Manager - Projects / Events Denim Club India.
Mob: +91 958 288 3612

The Textile Association (India) - Delhi Chapter organizes National Textile Seminar 2013
Theme: "Propelling Growth through Innovation"
Date: 12th April, 2013
Venue: PHD House, August Kranti Marg, New Delhi
Contact: Mr. D.K. Singh, Conference Secretary
The Textile Association (India) - Delhi Chapter
401, Gagan Deep, 12, Rajendra Place,
New Delhi - 110 008
Tel.: +91 11-25750224, 25736456,
M.: +91-971987523
E-mail: taidel@bol.net.in,
Website: http://www.tai-delhi.org

ABROAD

AATCC 2013 International Conference
(The annual AATCC International Conference offers presentations, networking, and vendor exhibits covering the entire textile and material supply chain)
Date: April 9-11, 2013
Venue: Hyatt Regency, Greenville, SC.
Contact: AATCC, P.O.Box 12215,
Research Triangle Park,
N.C. 27709-2215 USA;
Fax: +1 919 549 8933
E-mail: nicholk@aatcc.org.

10th Edition of Garfab-TX and the concurrent shows
Venue: SIECC, Surat - India
Date: 12-13-14 April, 2013
Contact: Vardaan Events Pvt. Ltd
64A, 2nd D Cross,
Hanumantappa Layout, Sultanpalya, Rt Nagar,
Bangalore - 560032 INDIA
Tel.: +91 80 2343 4446
Fax: +91 80 23535859
E-mail: info@vardaanevents.in
Website: www.vardaanevents.in

Every effort is made to ensure that the information given is correct. You are however, advised to re-check the dates with the organizers, for any change in schedule, venue etc., before finalizing your travel plans.

The views expressed in this journal are those of the authors. They are not necessarily the views of editor-publisher.

All rights reserved. Neither this publication nor any part of it may be reproduced in any form or by any means, nor may it be printed, photocopied or stored on microfilm without the written permission of the editor-publisher.
Advertisement Tariff

Journal of the TEXTILE Association

- Cover Gate Fold: ₹36,000
- Front Cover: ₹22,000
- Back Cover: ₹20,000
- Front / Back Inside: ₹18,000
- 1st Opening Page: ₹16,000
- Inside Double Spread: ₹30,000
- Full Page – 4 colour: ₹15,000
- Full Page – Black & White: ₹9,000
- Half Page – 4 colour: ₹8,000
- Half Page – Black & White: ₹5,000
- 1/4 Page – 4 colour (V): ₹6,000
- 1/4 Classified – 4 colour: ₹4,000

Technical specifications:
- Size of Magazine: 28 cm × 21 cm
- Print Area: 25 cm × 18 cm
- Frequency: Bi-monthly
- Print Order: 5,000 copies +
- Print Process: CTP

THE TEXTILE ASSOCIATION (INDIA)
Pathare House, R. No. 6, 2nd Floor, Next to State Bank of India, 67, Ranade Road, Dadar (W), Mumbai - 400 028.
Phone: (91-22) 2446 1145, Fax: (91-22) 2447 4971
E-mail: taicnt@gmail.com, jb.soma@gmail.com, www.textilassociationindia.org
The Comfort of Competence
Settle back and relax – thanks to Rieter

RSB-D 45 Draw Frame
High quality and productivity at delivery speeds of up to 1 100 m/min – that is what the new RSB-D 45 autoleveler draw frame and the SB-D 45 draw frame without autoleveling offer. Excellent scanning precision and autoleveling dynamics result in outstanding sliver regularity – from start to finish. Changes in delivery speed at batch change are made rapidly at the push of a button on the machine display. CLEANtube ensures clean sliver coiling when processing cotton. A short-fiber drafting system is available for short-staple cotton.

www.rieter.com

Feel at ease and indulge in the comfort of truly tailored support. Our proficient personnel are at your service – from the very first meeting seamlessly through to operations of your spinning mill plant. Rest assured – Rieter provides all four spinning system technologies and will advise you with competence on the best investment in terms of economy and market impact. Benefit from our expert services and enjoy the comfort of partnership with Rieter.
Introducing New Range of Rings & Travellers

- UNI QC Hi-Pe
- UNI SX+
- UNI ULTIMA NG

Since 1976

W-28, M.I.D.C. Bhosari Industrial Area, Pune - 411 026, INDIA. Tel.: +91 20 27120379, 27127674 Fax: +91 20 27126272, 27656315
Email: admin@unitechtxmech.com, sales@unitechtxmech.com URL: www.unitechtxmech.com